DRAFT # BASELINE ECOLOGICAL RISK ASSESSMENT PROBLEM FORMULATION FOR THE GULFCO MARINE MAINTENANCE SUPERFUND SITE FREEPORT, TEXAS ### PREPARED BY: Pastor, Behling & Wheeler, LLC 2201 Double Creek Drive Suite 4004 Round Rock, Texas 78664 (512) 671-3434 MARCH 10, 2010 ## TABLE OF CONTENTS | | LE OF CONTENTS | | |------------|---|--------| | LIST | OF TABLES | ii | | LIST | OF FIGURES | ii | | LIST | OF APPENDICES | iii | | LIST | OF ACRONYMS | iv | | | CUTIVE SUMMARY | | | 1.0 | INTRODUCTION | 1 | | | 1.1 REPORT PURPOSE | | | | 1.2 SITE BACKGROUND | | | | 1.2.1 Site Description | | | | 1.2.2 Site History | | | | 1.3 REPORT ORGANIZATION | 5 | | 2.0 | REFINEMENT OF CONTAMINANTS OF POTENTIAL ECOLOGICAL CONC | ERN 6 | | | 2.1 REFINEMENT PROCEDURES AND RESULTS | | | | 2.2 BACKGROUND COMPARISON | | | | 2.3 SPATIAL DISTRIBUTION OF REMAINING COPECs | | | 3.0 | CHARACTERIZATION OF ECOLOGICAL EFFECTS | 12 | | 4.0 | CONTAMINANT FATE AND TRANSPORT AND ECOSYSTEMS POTENTIA | LLY AT | | | RISK | | | | 4.1 CONTAMINANT FATE AND TRANSPORT | | | | 4.1.1 Potential Transport Mechanisms in Terrestrial Systems | | | | 4.1.2 Potential Transport Mechanisms in Estuarine Wetland and Aquatic S | | | | | | | | 4.1.3 COPEC-Specific Fate and Transport Characteristics | | | | 4.2 ECOSYSTEMS POTENTIALLY AT RISK | | | 5 0 | SITE SPECIFIC ASSESSMENT ENDOINTS | 10 | | 5.0 | SITE-SPECIFIC ASSESSMENT ENDPOINTS | | | | 5.1 TERRESTRIAL ASSESSMENT ENDPOINTS | | | | 5.2 ESTUARINE WETLAND AND AQUATIC ASSESSMENT ENDPOINTS. | 18 | | 6.0 | CONCEPTUAL SITE MODEL AND RISK QUESTIONS | | | | 6.1 CONCEPTUAL SITE MODEL | | | | 6.2 RISK QUESTIONS | 21 | | 7.0 | SCIENTIFIC MANAGEMENT DECISION POINT | 23 | | 8.0 | REFERENCES | 24 | # LIST OF TABLES | <u>Table</u> | <u>Title</u> | |--------------|--| | 1 | Updated Ecological Hazard Quotients Exceeding One for Soil | | 2 | Updated Ecological Hazard Quotients Exceeding One for Sediment and Surface Water | | 3 | Revised Sediment Toxicity Values | | 4 | Assessment Endpoints and Risk Questions | | 5 | COPECs and Media Recommended for Further Evaluation in the Work Plan for Baseline Ecological Risk Assessment | # LIST OF FIGURES | <u>Figure</u> | <u>Title</u> | |---------------|---| | 1 | Site Location Map | | 2 | Site Map | | 3 | Ecological Risk Assessment Process | | 4 | Wetland Map | | 5 | Hazard Quotients Greater than One for Soil Invertebrates - South
Area Soil | | 6 | Hazard Quotients Greater than One for Soil Invertebrates - North Area Soil | | 7 | Hazard Quotients Greater than One for Benthic Receptors -
Intracoastal Waterway Sediment | | 8 | Hazard Quotients Greater than One for Benthic Receptors - Wetlands Sediment | | 9 | Hazard Quotients Greater than One for Benthic Receptors - Pond Sediment | | 10 | Terrestrial Ecosystem Conceptual Site Model | | 11 | Aquatic Ecosystem Conceptual Site Model | ## LIST OF APPENDICES | <u>Appendix</u> | <u>Title</u> | |-----------------|--| | Α | Table 29 (COPECs and Media Recommended for Further Evaluation in the Baseline Ecological Risk Assessment) from SLERA | | В | Background Comparisons | | C | Ecological Hazard Quotient Calculations for South Area Soil | | D | Ecological Hazard Quotient Calculations for North Area Soil | | Е | Ecological Hazard Quotient Calculations for Intracoastal Waterway Sediment | | F | Ecological Hazard Quotient Calculations for Wetland Sediment | | G | Ecological Hazard Quotient Calculations for Pond Sediment | | Н | References for the Appendices | #### LIST OF ACRONYMS AET – apparent effects threshold AST – aboveground storage tank AUF – area-use factor (unitless) BERA – Baseline Ecological Risk Assessment COPEC – contaminants of potential ecological concern CSM – conceptual site model DDD – dichlorodiphenyldichloroethylene DDE-dichlorodiphenyl dichloroethane DDT - dichlorodiphenyltrichloroethane EPA – United States Environmental Protection Agency ERL – effects range low ERM – effects range medium GRG – Gulfco Remediation Group HPAH – high-molecular weight polynuclear aromatic hydrocarbon HQ - hazard quotient LOAEL – lowest-observed-effects-level LPAH – low-molecular weight polynuclear aromatic hydrocarbon NEDR – Nature and Extent Data Report NOAEL – no-observed-adverse-effects-level NPL – National Priorities List PAH – polynuclear aromatic hydrocarbon PCB – polychlorinated biphenyl PCL – Protective Concentration Level PSA – Potential Source Area QAPP – Quality Assurance Project Plan RI/FS – Remedial Investigation/Feasibility Study ROPC – receptors of potential concern SAP – Sampling and Analysis Plan SLERA – Screening-Level Ecological Risk Assessment SMDP - Scientific Management Decision Point SOW - Statement of Work TCEQ – Texas Commission on Environmental Quality TSWQS - Texas Surface Water Quality Standard UAO – Unilateral Administrative Order USFWS – United States Fish and Wildlife Service WP/SAP – Work Plan and Sampling and Analysis Plan #### **EXECUTIVE SUMMARY** The purpose of the Baseline Ecological Risk Assessment (BERA) problem formulation for the former Gulfco Marine Maintenance, Inc. site in Freeport, Brazoria County, Texas (the Site) is to use the Screening-Level Ecological Risk Assessment (SLERA) results and additional site-specific information to determine the scope and goals of the BERA. Problem formulation includes the following: - Refining the preliminary list of Contaminants of Potential Ecological Concern (COPECs) identified in the SLERA; - Further characterizing the ecological effects of the refined COPEC list; - Reviewing and refining information on contaminant fate and transport, complete exposure pathways, and ecosystems potentially at risk; - Determining assessment endpoints (i.e., the specific ecological values to be protected); and - Developing a conceptual site model with risk questions for the ecological investigation to address. Steps were taken to refine the COPEC list (i.e., modification of conservative exposure assumptions, consideration of background metals concentrations, and review of spatial COPEC distributions) and conduct literature research on the ecological effects of the refined list of COPECs, as well as their fate and transport characteristics relative to Site conditions. Subsequent to these steps, the following ecosystems have been identified as potentially at risk: - Localized wetland areas in the North Area of the Site and north of the Site. The primary COPECs with hazard quotients (HQs) greater than one in wetland sediment are several polynuclear aromatic hydrocarbons (PAHs). Most of the PAH HQs exceedances are located in three areas: (1) a small area immediately northeast of the former surface impoundments; (2) a smaller area immediately south of the former surface impoundments; and (3) at a sample location in the southwest part of the North Area approximately 60 feet north of Marlin Avenue. Additionally, dissolved copper in wetland surface water in the first area (the area northeast of the former surface impoundments) exceeds its Texas Surface Water Quality Standard (TSWQS). - <u>Localized areas of Intracoastal Waterway sediment within former Site barge slips.</u> The predominant COPECs in these areas, as reflected by HQ exceedances, are also PAHs. The total PAH concentration was highest in the northernmost sample in the western barge slip. In the eastern barge slip, exceedances were limited to three PAHs, hexachlorobenzene, and the sum of high molecular weight PAHs (HPAHs) in one sample. • Localized area of North Area soils south of the former surface impoundments. The COPECs in this area, where some buried debris was encountered in the shallow subsurface, are 4,4'-DDT and Aroclor-1254. The risk questions developed for these areas through the BERA Problem Formulation are: <u>Barge Slip and Wetland sediments</u>: Does exposure to COPECs in sediment adversely affect the abundance, diversity, productivity, and function of sediment invertebrates? <u>Wetland surface water</u>: Does exposure to COPECs in surface water adversely affect the abundance, diversity, productivity, and function of water-column invertebrates? <u>North Area soils</u>: Does exposure to COPECs in soil adversely affect the abundance, diversity, productivity, and function of soil invertebrates? The approach for evaluating these risk questions, through the development and implementation of testable hypotheses and measures of effect and exposure based on this BERA problem formulation will be described in the BERA Work Plan and Sampling and Analysis Plan (SAP). #### 1.0 INTRODUCTION The United States Environmental Protection Agency (EPA) named the former site of Gulfco Marine Maintenance, Inc. in Freeport, Brazoria County, Texas (the Site) to the National Priorities List (NPL) in May 2003. The EPA issued a modified Unilateral Administrative Order (UAO), effective July 29, 2005, which was subsequently amended effective January 31, 2008. The UAO required Respondents to conduct a Remedial Investigation and Feasibility Study (RI/FS) for the Site. Pursuant to Paragraph 37(d)(x) of the Statement of Work (SOW) for the RI/FS, included as an Attachment to the UAO, a Screening Level Ecological Risk Assessment (SLERA) was prepared for the Site (PBW, 2010). The Scientific/Management Decision Point (SMDP) provided in the SLERA concluded that the information presented therein indicated a potential for adverse ecological effects, and a more thorough assessment was warranted. This Baseline Ecological Risk Assessment (BERA) Problem Formulation has been prepared, consistent with Paragraphs 37(d)(xi) and (xii) of the UAO as the next step in that assessment.
This report was prepared by Pastor, Behling & Wheeler, LLC (PBW), on behalf of LDL Coastal Limited LP (LDL), Chromalloy American Corporation (Chromalloy) and The Dow Chemical Company (Dow), collectively known as the Gulfco Restoration Group (GRG). Figure 1 provides a map of the Site vicinity, while Figure 2 provides a Site map. #### 1.1 REPORT PURPOSE The ecological risk assessment process is outlined in the SOW (Page 20, Paragraphs 37(d)(xi) and (xii)). A diagram of the process as provided in EPA's Ecological Risk Assessment Process for Superfund (EPA, 1997) is provided in Figure 3. Problem formulation represents the third step in the eight-step ecological risk assessment process. The purpose of the problem-formulation phase is to refine the screening level problem formulation, and use the SLERA results and additional site-specific information to determine the scope and goals of the BERA. As described in EPA, 1997, problem formulation includes the following: - Refining the preliminary list of COPECs identified in the SLERA; - Further characterizing the ecological effects of the refined COPEC list; - Reviewing and refining information on contaminant fate and transport, complete exposure pathways, and ecosystems potentially at risk; - Determining specific assessment endpoints (i.e., the specific ecological values to be protected); and Developing a conceptual model with risk questions that the ecological investigation will address. The SMDP at the end of problem formulation is the identification and agreement on the conceptual model, including assessment endpoints, exposure pathways, and questions or risk hypotheses. The results of this SMDP are then used to select measurement endpoints for development of the BERA Work Plan and Sampling and Analysis Plan (WP/SAP). #### 1.2 SITE BACKGROUND #### 1.2.1 Site Description The Site is located in Freeport, Texas at 906 Marlin Avenue (also referred to as County Road 756) (Figure 1). The Site consists of approximately 40 acres along the north bank of the Intracoastal Waterway between Oyster Creek (approximately one mile to the east) and the Texas Highway 332 bridge (approximately one mile to the west). The Site includes approximately 1,200 feet (ft.) of shoreline on the Intracoastal Waterway, the third busiest shipping canal in the US (TxDOT, 2001) that, on the Texas Gulf Coast, extends 423 miles from Port Isabel to West Orange. Marlin Avenue divides the Site into two primary areas (Figure 2). For the purposes of descriptions in this report, Marlin Avenue is approximated to run due west to east. The property to the north of Marlin Avenue (the North Area) consists of undeveloped land and closed surface impoundments, while the property south of Marlin Avenue (the South Area) was developed for industrial uses with multiple structures, a dry dock, sand blasting areas, an aboveground storage tank (AST) tank farm, and two barge slips connected to the Intracoastal Waterway. The South Area is zoned as "W-3, Waterfront Heavy" by the City of Freeport. This designation provides for commercial and industrial land use, primarily port, harbor, or marine-related activities. The North Area is zoned as "M-2, Heavy Manufacturing." Adjacent property to the north, west, and east of the North Area is undeveloped. Adjacent property to the east of the South Area is currently used for industrial purposes while to the west the property is currently vacant and previously served as a commercial marina. The Intracoastal Waterway bounds the Site to the south. Residential areas are located south of Marlin Avenue, approximately 300 feet west of the Site, and 1,000 feet east of the Site. The Intracoastal Waterway is a major corridor for commercial barge traffic and other boating activities. Approximately 50,000 commercial vessel trips and 28 million short tons of cargo were transported on the Galveston to Corpus Christi section of the Intracoastal Waterway in 2006. The vast majority of this cargo (greater than 23 million tons) was petroleum, chemicals or related products (USACE, 2006). The Intracoastal Waterway design width and depth in the vicinity of the Site, based on USACE mean low tide datum, is 125 feet wide and 12 feet deep (USACE, 2008). The waterway is maintained by periodic dredging operations conducted by the USACE as frequently as every 20 to 38 months, and as infrequently as every 5 to 46 years (Teeter et al., 2002). A September 2008 survey indicated that actual channel depths in the 19-mile reach from Chocolate Bayou to Freeport Harbor, which includes the Site vicinity, ranged from 9.3 to 11.1 feet (USACE, 2008). According to the USACE (USACE, 2009), the Intracoastal Waterway in the immediate vicinity of the Site is not currently scheduled for dredging, although dredging is performed approximately every three to four years and the area to the west near Freeport Harbor (Intracoastal Waterway Mile 395) was dredged in 2009. The South Area includes approximately 20 acres of upland that was created from dredged material from the Intracoastal Waterway. The two most significant surface features within the South Area are a Former Dry Dock and the AST Tank Farm (Figure 2). The remainder of the South Area surface consists primarily of former concrete laydown areas, concrete slabs from former Site buildings, gravel roadways and sparsely vegetated open areas with some localized areas of denser brush vegetation, particularly near the southeast corner of the South Area. Some of the North Area is upland created from dredge spoil, but most of this area is considered wetlands, as per the United States Fish and Wildlife Service (USFWS) Wetlands Inventory Map (Figure 4) (USFWS, 2008). This wetland area generally extends from East Union Bayou to the southwest, to the Freeport Levee to the north, to Oyster Creek to the east (see Figure 1). The most significant surface features in the North Area are two ponds (the Fresh Water Pond and the Small Pond) and the closed former surface impoundments. The former surface impoundments and the former parking area south of the impoundments and Marlin Avenue comprise the vast majority of the upland area within the North Area (Figure 4). Field observations during the RI indicate that the North Area wetlands are irregularly flooded with nearly all of the wetland area inundated by surface water that can accumulate to a depth of one foot or more during extreme high tide conditions, storm surge events, and/or in conjunction with surface flooding of Oyster Creek northeast of the Site (Figure 1). Due to a very low topographic slope and low permeability surface sediments, the wetlands are also very poorly draining and can retain surface water for prolonged periods after major rainfall events. Under normal tide conditions and during periods of normal or below normal rainfall, standing water within the wetlands (outside of the two ponds discussed below) is typically limited to a small, irregularly shaped area immediately north of the Fresh Water Pond and a similar area immediately south of the former surface impoundments (see Figure 2). Both of these areas can be completely dry, as was observed in June 2008. As such, given the absence of any appreciable areas of perennial standing water, the wetlands are effectively hydrologically isolated from Oyster Creek, except during intermittent, and typically brief, flooding events. The Fresh Water Pond is approximately 4 to 4.5 feet deep and is relatively brackish (specific conductance of approximately 40,000 umhos/cm and salinity of approximately 25 parts per thousand). This pond appears to be a borrow pit created by the excavation of soil and sediment as suggested by the well-defined pond boundaries and relatively stable water levels. Water levels in the Fresh Water Pond are not influenced by periodic extreme tidal fluctuations as the pond dikes preclude tidal floodwaters in the wetlands from entering the pond, except for extreme storm surge events, such as observed during Hurricane Ike in September 2008. The Small Pond is a very shallow depression located in the eastern corner of the North Area. The Small Pond is not influenced by daily tidal fluctuations and behaves in a manner consistent with the surrounding wetland, i.e., becomes dry during dry weather, but retains water in response to and following rainfall and extreme tidal events. Relative to the Fresh Water Pond, water in the Small Pond is less brackish based on specific conductance (approximately 14,000 umhos/cm) and salinity (approximately eight parts per thousand) measurements. #### 1.2.2 Site History A detailed discussion of Site operational history was provided in the RI/FS Work Plan (PBW, 2006). Key elements of that discussion are noted herein. During the 1960s, the Site was used for occasional welding but there were no on-site structures (Losack, 2005). According to the Hazard Ranking Score Documentation (TNRCC, 2002), from 1971 through 1999, at least three different owners used the Site as a barge cleaning facility. Beginning in approximately 1971, barges were brought to the facility and cleaned of waste oils, caustics and organic chemicals, with these products stored in on-site tanks and later sold (TNRCC, 2002). Sandblasting and other barge repair/refurbishing activities also occurred on the Site. At times during the operation, wash waters were stored either on a floating barge, in on-site storage tanks, and/or in surface impoundments on Lot 56 of the Site. The surface impoundments were closed under the Texas Water Commission's (Texas Commission on Environmental Quality (TCEQ) predecessor agency) direction in 1982 (Carden, 1982). Aerial spraying of the wetland areas north of Marlin Avenue, including the North Area, for mosquito control has historically been and continues to be performed by the Brazoria County Mosquito Control District and its predecessor agency, the Brazoria County Mosquito Control Department (both referred to hereafter as BCMCD). Aerial spraying for
mosquito control has been performed over rural areas in the county since 1957 (Lake Jackson News, 1957). Historically, aerial spraying of a DDT solution in a "clinging light oil base" was performed from altitudes of 50 to 100 feet (Lake Jackson News, 1957). Recently BCMCD has been using Dibrom®, an organophosphate insecticide, with a diesel fuel carrier through a fogging atomizer application (Facts, 2006, 2008a, 2008b). Truck-based spraying has also been performed along Marlin Avenue. Both types of spraying were observed during the performance of Site RI activities. #### 1.3 REPORT ORGANIZATION The organization for this report has been patterned after that suggested in EPA guidance (EPA, 1997). As such, Section 2.0 provides a refinement of the COPECs indentified in the SLERA. Section 3.0 characterizes the potential ecological effects of that refined list of COPECs. Section 4.0 describes significant fate and transport characteristics, ecosystems potentially at risk and complete exposure pathways. Section 5.0 describes assessment endpoints, and Section 6.0 provides the refined Conceptual Site Model and resulting risk decisions. The problem formulation SMDP is discussed in Section 7.0. Appendix A contains a table from the SLERA listing COPECs and media recommended for further evaluation in the BERA. Appendix B details a comparison of Site data to background. Appendices C through H contain the detailed calculation spreadsheets for the COPEC refinement described in Section 2.0. # 2.0 REFINEMENT OF CONTAMINANTS OF POTENTIAL ECOLOGICAL CONCERN The SLERA (PBW, 2010) concluded with the SMDP that there is a potential for adverse ecological effects from COPECs and a more thorough assessment through continuation of the ecological risk assessment process was warranted. The SLERA calculated HQs based on conservative screening-level assumptions, such as area-use factors (AUFs) of 100%, 100% contaminant bioavailability, maximum ingestion rates, and minimum body weights. Appendix A provides the SLERA tables identifying those COPECs with HQs greater than one. As illustrated in Appendix A, the screening-level evaluation identified HQs greater than one for the following Site media and receptors: - Invertebrate receptors in South Area soils (as represented by the earthworm); - Invertebrate receptors in North Area soils (also represented by the earthworm); - Invertebrate receptors in Background Area soils (again represented by the earthworm); - Benthic receptors in Site Intracoastal Waterway sediment (as represented by the polychaetes *Capitella capitata*); - Benthic receptors in Background Intracoastal Waterway sediment (also represented by the polychaetes *Capitella capitata*); - Benthic receptors in Site wetlands sediment (as represented by the polychaetes *Capitella capitata*); - Benthic receptors in Site pond sediment (as represented by the polychaetes *Capitella capitata*); and - Avian carnivore receptors that might be exposed to pond sediment and surface water (as represented by the sandpiper). Additionally, the maximum concentration in surface water of some COPECs is greater than the TCEQ ecological benchmark value or the TSWQS. These COPECs, acrolein, dissolved copper, and dissolved silver, are being further evaluated in the BERA and details are below. Upper trophic level receptors were determined to not be at risk from these COPECs in the SLERA. Acrolein was measured (0.00929 mg/L) in one of four surface water samples from the wetlands. It was not detected in any surface water samples from the Intracoastal Waterway or the two ponds. The single detection is greater than the TCEO ecological benchmark value of 0.005 mg/L by less than a factor of two. There is neither a TSWQS nor a recommended national water quality criterion from the EPA (2009) for chronic marine exposures. The maximum measured concentration of dissolved copper in surface water from the wetlands was 0.011 mg/L. It was not detected in any surface water samples from the Intracoastal Waterway or the two ponds. The maximum concentration is greater than the TSWQS of 0.0036 mg/L by about three-fold. The maximum measured concentration of dissolved silver in surface water from the ponds was 0.0029 mg/L. It was not detected in the surface water samples from the Site-related area of the Intracoastal Waterway or the wetlands. All detections are greater than the TCEQ ecological screening benchmark value of 0.00019 mg/L, the maximum being about 15 times greater. The maximum measured concentration of dissolved silver in surface water from the background area of the Intracoastal Waterway was 0.0058 mg/L. All detections are greater than the TCEQ ecological benchmark value of 0.00019 mg/L, the maximum being about 31 times greater. There is neither a TSWQS nor a recommended national water quality criterion from the EPA (2009b) for chronic marine exposures. The TCEQ ecological benchmark value is derived from the EPA (2009) acute marine recommended water quality criterion divided by a safety factor of 10. #### 2.1 REFINEMENT PROCEDURES AND RESULTS As described in EPA, 1997, the purpose of the refinement step of problem formulation is to consider how the HQs in the SLERA would change when more realistic conservative assumptions are used. Consistent with that objective, the following modified assumptions are used here in the BERA to calculate revised HQs and refine the COPEC list, and includes the following: - Use of average (instead of maxima) ingestion rates for both media and foods consumed; - Use of average (instead of minima) body weights for food chain receptors; and - Use of AUFs less than 100% when it can be demonstrated that a specific receptor's home range size is greater than the size of the Site. The detailed spreadsheets in Appendices C through J describe the specific assumption modifications made for specific receptors and the resulting calculations. All of the modified assumptions for the refinement pertain to non-sedentary ecological food-chain receptors. Results of the refinement calculations include the deletion of the avian carnivore (sandpiper) receptor for the pond sediment. The HQ calculated in the SLERA for this receptor in the pond was 1.2. With changes in the ingestion rates, body weights and AUFs, the refined lead HQ for the avian carnivore (sandpiper) receptor at the ponds was 0.96. So, the exposure pathway including media and food ingestion of lead by the avian carnivore (sandpiper) is dismissed from further evaluation. All other COPECs from the SLERA still remain for further evaluation. #### 2.2 BACKGROUND COMPARISON As part of this problem formulation, Site metal COPECs in soil and/or sediment that are remaining after the refinement (barium, chromium, copper, lead, nickel, and zinc) were statistically compared to the same metal compounds in the background area for soil and sediment. This information was used in the development of Site-specific assessment endpoints (Section 5.0) and risk questions (Section 6.0), which will subsequently be used to develop testable hypotheses and measures as part of the study design in the WP/SAP. The COPEC concentrations in Site samples that are not statistically different from background concentrations are dismissed from further evaluation in the BERA (background data will still be discussed in the uncertainty section of the BERA report). The soil background data were compared to soil data from the South and North Areas of the Site, as well as sediments from the North wetland and the North Area ponds. As described in the Nature and Extent Data Report (NEDR) (PBW, 2009), this comparison was appropriate based on similarities in composition and condition between background soil and sediments of the North wetlands area. Sediment and surface water data for the Intracoastal Waterway samples were compared to sediment and surface water data collected in the Intracoastal Waterway background area. The background comparisons were performed using analysis of variance tests in accordance with EPA's *Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites* (EPA, 2002). The analysis of variance tests perform a comparison of the means analysis. The output of these background statistical comparison tests is provided in Appendix B. A summary of the statistical comparison conclusions is provided in Appendix Table B-1. The conclusion is that the Site concentrations of these metals COPECs are not different from the background concentrations for all metals evaluated. Nickel is retained for further evaluation because, as shown on Table B-1, it was not analyzed in the background samples. Therefore, the only metal COPEC in soil or sediment to be further evaluated is nickel in wetlands sediment. For the COPECs in surface water (acrolein, dissolved copper, and dissolved silver), a statistical comparison of means between Site and background data sets was not performed due to the small data set sizes (four background Intracoastal Waterway surface water samples and six pond surface water samples). However, dissolved silver was detected in all four background surface water samples at concentrations ranging from 0.0043 mg/L to 0.006 mg/L, while the maximum reported dissolved silver concentration in pond surface water samples was a lower value of 0.0029 mg/L. Based on this observation that all the pond surface water sample concentrations were less than the minimum background concentration, dissolved silver in pond surface water is dismissed from further evaluation in the BERA. #### 2.3 SPATIAL DISTRIBUTION OF REMAINING COPECS In order to evaluate potential hotspots and the spatial distributions of the remaining COPECs, HQ exceedances in individual samples are plotted by environmental medium in Figures 5 through 9. For soils, the HQs are based on no-observed-adverse-effects-levels (NOAELs). For sediments, HQs are based on Effects Range-Low (ERL) values, where available, or Apparent Effects Threshold (AET) values. The
paragraphs below discuss the spatial trends of the HQ exceedances observed in the figures. Figure 5 shows HQ exceedances for soil invertebrates in the South Area. As indicated on this figure, the highest HQs and most of the exceedances are located near the former dry dock in the northwestern part of the South Area. As shown on Figure 5, most of those samples are from the side embankments of the dry dock itself, where the soils consist of compacted engineered fill. Other samples with exceedances in the South Area, namely those off the northeastern end of the westernmost barge slip and between the western and eastern barge slips, are also from areas devoid of vegetation where the soil is compacted from engineered fill or for use as a driveway. The highest HQ is 26 for 4,4'-DDD in sample SA3SB17. All other HQs were less than or equal to 5 and nearly 75 percent were less than or equal to 2. These areas of side embankments, engineered fill, and driveways are not considered habitat for soil invertebrates. Therefore, the exposure pathway is considered incomplete and the associated COPECs (4,4'-DDD, 4,4'-DDE, 4,4'-DDT, Aroclor-1254, and HPAH) are dismissed from further consideration for South Area soils in the BERA. At this point, South Area soils have no remaining COPECs, so this area/medium requires no further evaluation in the BERA. Figure 6 shows HQ exceedances for soil invertebrates in the North Area. As indicated on this figure, the only HQs are 4,4'-DDT and Aroclor-1254 in the 1.5 to 2.0 foot depth interval sample from SB-204. This boring was located in an area where buried debris was observed and some of this debris (painted wood fragments and rubber) was observed in this specific sample interval. Figure 7 shows HQ exceedances for benthic receptors in Site Intracoastal Waterway sediment. None of the HQs are greater than 5 and 75 percent are less than or equal to 2. As indicated on this figure, the HQs greater than one are nearly all PAHs, except for 4,4'-DDT in a sample next to the western boundary of the Site and hexachlorobenzene on the edge of the eastern barge slip, and most are associated with samples in the northern end of the western barge slip. Figure 8 shows HQ exceedances for benthic receptors in Site wetland sediment. As shown in this figure, the predominant and highest HQs are associated with PAHs (both individual PAHs and low molecular weight PAHs (LPAH), HPAH, and total PAHs). Most of the PAH HQs are located in three areas: (1) a small area immediately northeast of the former surface impoundment (where most of the highest PAH HQs are observed; e.g., 2WSED2); (2) a smaller area immediately south of the former surface impoundments (e.g., 2WSED17); and (3) at sample location NB4SE08 in the southwest part of the North Area. The three highest HQs, all located in the area north of the former surface impoundments, are for dibenz(a,h)anthracene. Figure 9 shows HQ exceedances for benthic receptors in pond sediment. As shown in this figure, the sole HQ is 4,4'-DDT in the southernmost sample from the Small Pond. There are two COPECs, acrolein and dissolved copper, with maximum concentrations that exceed their respective ecological screening benchmark and TSWQS. Acrolein was only detected once in four surface water samples from the wetlands area, and not detected in any other Site samples. Its concentration is slightly less than twice the benchmark value, so if a HQ were computed it would be rounded to 2. Dissolved copper was detected in three of four surface water samples from the wetlands area. All of the detections are greater than the TSWQS, the highest being about three times greater. Acrolein is being dismissed at this step because of its single detection in Site surface water and minimal exceedance above the benchmark value. Dissolved copper is being retained for further evaluation in the BERA. After the three refinement steps detailed above, the remaining COPECs, and their environmental medium and location, are listed in Tables 1 and 2. #### 3.0 CHARACTERIZATION OF ECOLOGICAL EFFECTS The SLERA (PBW, 2010) included a literature search of potential ecological effects from the initial COPECs. As part of problem formulation in the BERA, additional literature information related to the remaining Site COPECs was obtained and reviewed. Upper trophic level receptors are no longer considered to be at risk of adverse effects, so toxicological endpoints for these receptors, such as lowest-observed-adverse-effects-levels (LOAELs), did not need to be sought from the literature. Endpoint values similar to LOAELs that are used for invertebrates in sediment, Effects Range-Medium (ERM) were obtained from the scientific literature (Buchman, 2008.). Midpoint values were computed from these ERM values and the ERL values used in the SLERA and are listed in Table 3 for later use in the BERA. If an ERL value was not found for a particular COPEC, then the AET value (also used in the SLERA) is listed. A number of researchers have performed studies to determine AETs, which are measures of sediment effect levels developed using the empirical data from the results of toxicity tests and benthic community structure. They are derived by determining, for a given chemical within a data set, the chemical sediment concentration above which a particular adverse biological effect is always statistically significant relative to a designated reference location. ERLs and ERMs are also statistically-derived sediment benchmark values based on a variety of benthic endpoints including mortality, community structure, reproductive, and other effects. ERL concentrations represent concentrations above which toxic effects to sediment organisms are possible, while ERM concentrations represent concentrations above which toxic effects are probable. # 4.0 CONTAMINANT FATE AND TRANSPORT AND ECOSYSTEMS POTENTIALLY AT RISK The SLERA (PBW, 2010) included a preliminary evaluation of contaminant fate and transport, ecosystems potentially at risk, and complete exposure pathways for COPECs and media that might pose an adverse risk to terrestrial and aquatic receptors. The exposure pathways and ecosystems associated with the assessment endpoints carried forward from the SLERA were evaluated in more detail in this problem formulation. Consistent with EPA (1997), this evaluation also considered the possible reduction of potentially complete, but less significant, exposure pathways to examine the critical exposure pathways, where appropriate. The findings of this evaluation are presented below. #### 4.1 CONTAMINANT FATE AND TRANSPORT Additional information was acquired from the scientific literature regarding the fate and transport of the remaining COPECs. Specifically, details about transport mechanisms in terrestrial and aquatic systems similar to those found at the Site were obtained and are discussed below. #### 4.1.1 Potential Transport Mechanisms in Terrestrial Systems Potentially significant routes of migration for Site COPECs relative to terrestrial systems occur in the primary transport media of air and surface water (runoff). Surface water runoff, or overland flow, can carry dissolved COPECs in solution or move COPECs adsorbed to soil particles from one portion of the Site to another, depending on surface topography. The same mechanisms described for overland flow in the wetlands (Section 4.1.2) apply to the South Area and the upland areas of the North Area. Airborne transport of Site COPECs is possible via entrainment of COPEC-containing particles in wind. This pathway is a function of particle size, chemical concentrations, moisture content, degree of vegetative cover, surface roughness, size and topography of the source area, and meteorological conditions (wind velocity, wind direction, wind duration, precipitation, and temperature). Movement of airborne contaminants occurs when wind speeds are high enough to dislodge particles; higher wind velocities are required to dislodge particles than are necessary to maintain suspension. #### 4.1.2 Potential Transport Mechanisms in Estuarine Wetland and Aquatic Systems Potentially significant routes of migration for Site COPECs relative to wetland and aquatic systems occur in the primary transport media of surface water and sediment. The primary surface water/sediment pathways for potential contaminant migration from Site potential source areas (PSAs) are: (1) erosion/overland flow to wetland areas north and east of the Site from the North Area due to rainfall runoff and storm/tide surge; and (2) erosion/overland flow to the Intracoastal Waterway from the South Area as a result of rainfall runoff and extreme storm surge/tidal flooding events. The primary North Area PSAs, the former surface impoundments, were closed and capped in 1982. Thus, potential migration from these areas to the adjacent wetlands would have to have occurred during the operational period of the impoundments, potentially when discharges from the impoundments in July 1974 and August 1979 reportedly "contaminated surface water outside of ponds" and "damaged some flora north of the ponds" (EPA, 1980). Although not associated with Site operations, the historical and ongoing spraying of pesticides in the wetland areas for mosquito control could represent a potential source of DDT and PAHs (associated with the light oil base and diesel carrier used in spraying then and now, respectively) to the wetlands. Overland flow during runoff events occurs in the direction of topographic slope. Overland flow during runoff events occurs if soils are fully saturated and/or precipitation rates are greater than infiltration rates; therefore, this type of flow is usually associated with significant rainfall events. As a result of the minimal slope at the site, overland flow during more routine rainfall events is generally low, with runoff typically ponding in many areas of the Site. Extreme storm events, such as Hurricane Ike in September 2008, can inundate the
Site, resulting in overland flow during both storm surge onset and recession. During less extreme storm surge events or unusually high tides, tidal flow to wetland areas on and adjacent to the Site occurs from Oyster Creek northeast of the Site (Figure 1); however, the wetland areas are more typically hydrologically isolated from Oyster Creek. Potential contaminant migration in surface water runoff can occur as both sediment load and dissolved load; therefore, both the physical and chemical characteristics of the contaminants are important with respect to surface-water/sediment transport. The low topographic slope of the Site and adjacent areas is not conducive to high runoff velocities or high sediment loads. Consequently, surface soil particles would not be readily transported in the solid phase. Additionally, the vegetative cover in the North Area is not conducive to significant soil erosion and resulting sediment load transport with surface water in these areas. Dissolved loads associated with surface runoff from the North Area would likewise be expected to be minimal due to the aforementioned absence of exposed PSAs, and the relatively low solubilities of those COPECs (primarily, pesticides and PAHs) that are present. #### 4.1.3 COPEC-Specific Fate and Transport Characteristics PAHs. A detailed literature review related to PAH fate and transport characteristics in similar settings to the Site was performed for the ecological problem formulation for the Alcoa(Point Comfort)/Lavaca Bay Superfund Site (Alcoa, 2000). That document (used with permission) provided significant parts of the summary presented herein. Due to their low solubility and relatively high affinity for adsorption to soils, sediment organic matter, PAHs in the aquatic environment are primarily associated with particulate matter and sediments (Neff, 1985). PAHs sorb to both inorganic and organic surfaces, although adsorption to organic surfaces tends to be most important. PAH adsorption to particulate mater, especially HPAHs, is a primary mechanism for removing these compounds from the water column, resulting in subsequent deposition to sediments. PAH sorption to sediments is strongly influenced by sediment organic carbon content. PAH sorption is also influenced by particle size (Karickhoff et al., 1979); the smaller the particle size, the greater the adsorption potential. Benthic organisms accumulate PAHs by two primary exposure routes: (1) bioconcentration through transport across biological membranes exposed to aqueous phase PAHs (i.e., pore water); and (2) bioaccumulation through direct food or sediment ingestion. For benthic organisms, direct ingestion of food and/or sediments is often the most significant exposure pathway for HPAHs (Niimi and Dookhran, 1989; Eadie et al., 1985; Weston, 1990), while pore water is likely a more significant route for LPAH accumulation (Meador et al., 1995b; Adams, 1987; Landrum, 1989). Differences in feeding regime (i.e., epibenthic, infaunal) also influence which exposure route is most significant. As a result of these issues, PAH accumulation by benthic organisms can vary. In addition, the degree to which organisms accumulate PAHs depends on their ability to metabolize these compounds. Although some organisms metabolize PAHs (e.g., fish and mammals), many benthic invertebrates are limited in their ability to metabolize PAHs (Meador et al., 1995a; Landrum, 1982; Frank et al., 1986). In general, there is little evidence to suggest PAHs biomagnify in aquatic systems. However, because of the limited ability of invertebrates to metabolize PAHs, some biomagnification may occur in lower trophic levels (Meador et al., 1995a; McElroy et al., 1989; Broman et al., 1990; Suede et al., 1994). Although metabolism often results in detoxification, some PAH metabolites are more toxic than parent materials; however, the degree to which these metabolites are accumulated by aquatic organisms is unknown. Organochlorine Pesticides and PCBs. Organochlorine pesticides and PCBs are of interest in characterizations of risk to ecological receptors due to the affinity of these compounds to sorb tightly onto soils and sediments and persist for long periods of time in the environment. The degradation of organochlorine compounds in the environment is dependent on the degree and pattern of chlorination, with compounds possessing five or more chlorine atoms more persistent in the environment than those with fewer chlorine atoms. Benthic invertebrate communities are particularly susceptible to organochlorine compound impacts as consequence of ingestion of sediment particles and exchange of PCBs directly from the particles. The silt and clay content of sediments can have a significant influence on the bioavailability of organochlorine compounds, with low silt and clay content sediments exhibiting decreased effects on benthic communities (Eisler, 1986). Due to bioaccumulative properties, organochlorine compounds cycle readily from sediment sources into upper trophic levels. This class of compounds are soluble in lipids and partition readily into the fatty tissues of higher-level consumers, with the ability to be metabolized decreasing as the number of substituted chlorines decreases. For highly substituted compounds, metabolism is less likely and accumulation may continue indefinitely. The fate of organochlorine compounds within biologic systems is wide ranging as a result of differences in the ability to accumulate, metabolize, and eliminate specific isomers. #### 4.2 ECOSYSTEMS POTENTIALLY AT RISK Based on the remaining HQ exceedances listed in Tables 1 and 2, and in consideration of the ecological effects literature evaluation (Section 3.0), the fate and transport characteristics (Section 4.1), and the nature of the ecosystems themselves, the following ecosystems have been identified as potentially at risk: - Localized wetland areas in the North Area and north of the Site. The primary COPECs with HQ exceedances in wetland sediment are several PAHs (Table 2). As shown on Figure 8, most of the PAH HQs are located in three areas: (1) a small area immediately northeast of the former surface impoundments (where most of the highest PAH HQs are observed; e.g., 2WSED2); (2) a smaller area immediately south of the former surface impoundments (e.g., 2WSED17); and (3) at sample location NB4SE08 in the southwest part of the North Area approximately 60 feet north of Marlin Avenue. Additionally, dissolved copper in wetland surface water in the first area (the area northwest of the former surface impoundments) exceeds its TSWQS. - Localized areas of Intracoastal Waterway sediment within the former barge slips. The predominant COPECs in these areas, as reflected by HQ exceedances (Table 2), are PAHs. The total PAH concentration (5.62 mg/kg) was highest in the northernmost sample in the western barge slip. In the eastern barge slip, exceedances were limited to three PAHs, hexachlorobenzene, and HPAHs in one sample. - Localized area of North Area soils south of the former surface impoundments. As previously described (Section 2.3), the only HQs are 4,4'-DDT and Aroclor-1254 in the 1.5 to 2.0 foot depth interval sample from SB-204. This boring was located in an area where buried debris was observed and some of this debris (painted wood fragments and rubber) was observed in this specific sample interval. #### 5.0 SITE-SPECIFIC ASSESSMENT ENDPOINTS Assessment endpoints are explicit expressions of the ecological resource to be protected for a given receptor of potential concern (EPA, 1997). Several assessment endpoints were identified in the SLERA to focus the screening evaluation on relevant receptors rather than attempting to evaluate risks to all potentially affected ecological receptors. As part of this BERA problem formulation, these assessment endpoints were re-evaluated based on the remaining environmental media and receptors of potential concern. #### 5.1 TERRESTRIAL ASSESSMENT ENDPOINTS The terrestrial portion associated with the Site that remains of concern is a small area of land south of the former surface impoundments. The environmental value of upland lands is related to its ability to support plant communities, soil microbes/detritivores, and wildlife. Based on the steps taken in the refinement (Section 2.0) and new information obtained about COPEC fate and transport and ecosystems at risk (Section 4.0), the following remains the assessment endpoint for the BERA (Table 4): • Soil invertebrates abundance, diversity, and productivity (as decomposers and food chain base, among others) are ecological values to be preserved in a terrestrial ecosystem because they provide a mechanism for the physical and chemical breakdown of detritus for microbial decomposition (remineralization), which is a vital function. #### 5.2 ESTUARINE WETLAND AND AQUATIC ASSESSMENT ENDPOINTS The estuarine wetland habitat for the Site extends over the majority of the North Area while the Intracoastal Waterway (i.e., aquatic habitat) is south of the Site. Wetlands are particularly important habitat because they often serve as a filter for water prior to it going into another water body. They are also important nurseries for fish, crab, and shrimp, and they act as natural detention areas to prevent flooding. The environmental value for these areas is related to their ability to support wetland plant communities, microbes/benthos/detritivores in the sediment, and wildlife. Based on the steps taken in the refinement (Section 2.0) and new information obtained about COPEC fate and transport and ecosystems at risk (Section 4.0), the following remains the assessment endpoint for the BERA (Table 4): • Benthos abundance, diversity, and productivity are values to be preserved in estuarine ecosystems because these organisms provide a critical pathway for energy transfer from detritus and attached algae to other omnivorous organisms (e.g., polychaetes and crabs) and carnivorous
organisms (e.g., black drum and sandpipers), as well as integrating and transferring the energy and nutrients from lower trophic levels to higher trophic levels. The most important service provided by benthic detritivores is the physical breakdown of organic detritus to facilitate microbial decomposition. #### 6.0 CONCEPTUAL SITE MODEL AND RISK QUESTIONS #### 6.1 CONCEPTUAL SITE MODEL Preliminary Conceptual Site Models (CSMs) for the aquatic and terrestrial ecosystems were described in the SLERA. During problem formulation in the BERA, these CSMs have been updated to consider the results of the COPEC refinement (Section 2.0), expanded review of potential ecological effects of those COPECs (Section 3.0), and the more detailed fate and transport evaluation (Section 4.0). Updated CSMs based on these considerations are shown on Figures 10 and 11. These CSMs are discussed below. The identification of potentially complete exposure pathways is performed to evaluate the exposure potential as well as the risk of effects on ecosystem components. In order for an exposure pathway to be considered complete, it must meet all of the following four criteria (EPA, 1997): - A source of the contaminant must be present or must have been present in the past. - A mechanism for transport of the contaminant from the source must be present. - A potential point of contact between the receptor and the contaminant must be available. - A route of exposure from the contact point to the receptor must be present. Exposure pathways can only be considered complete if all of these criteria are met. If one or more of the criteria are not met, there is no mechanism for exposure of the receptor to the contaminant. The potentially complete and significant exposure pathways and receptors that match the current assessment endpoints are shown in the CSM for the terrestrial and estuarine wetland and aquatic ecosystems (Figures 10 and 11, respectively). In general, biota can be exposed to chemical stressors through direct exposure to abiotic media or through ingestion of forage or prey that have accumulated contaminants. Exposure routes are the mechanisms by which a chemical may enter a receptor's body. Possible exposure routes include 1) absorption across external body surfaces such as cell membranes, skin, integument, or cuticle from the air, soil, water, or sediment; and 2) ingestion of food and incidental ingestion of soil, sediment, or water along with food. Absorption is especially important for plants and aquatic life. The terrestrial ecosystem CSM (Figure 10) begins with historical releases of the COPECs from the former surface impoundments and operations areas in the North and South Areas. Soil became contaminated with the COPECs and contaminated soil was transported from its original location to other portions of the Site via the transport mechanisms of surface runoff and airborne suspension/deposition. The significant potential receptors (soil invertebrates) are then exposed to soils in their original location or otherwise via direct contact or ingestion of soil. The aquatic ecosystem CSM (Figure 11) begins with historical releases of the COPECs from barge cleaning operations that impacted sediment in the barge slips of the Intracoastal Waterway and surface water and sediment in the North Area wetlands. These areas were impacted via the primary release mechanisms of direct discharge from past operations, surface runoff, and particulate dust/volatile emissions. Tidal flooding and rainfall events created secondary release mechanisms of resuspension/deposition, bioirrigation, and bioturbation, such that other areas of surface water and sediment became contaminated. The significant potential receptors (sediment and water-column invertebrates) are then exposed to the contaminated surface water and sediment in their original location or otherwise via direct contact or ingestion of surface water and sediment. #### 6.2 RISK QUESTIONS As described in ecological risk assessment guidance (EPA, 1997), risk questions for the BERA are questions about the relationships among assessment endpoints and their predicted responses when exposed to contaminants. As such, the risk questions are based on the assessment endpoints and provide a basis for the ecological investigation study design developed in the BERA WP/SAP. The overarching risk question to be evaluated in the BERA is whether Site-related contaminants are causing, or have the potential to cause, adverse effects on the invertebrates in North Area soils and on benthos and zooplankton of the wetlands area and the barge slips of the Intracoastal Waterway. For problem formulation, this overarching question is refined into a series of specific questions referencing specific COPECs and the assessment endpoint. Preliminary risk questions were developed for the SLERA (PBW, 2010). Based on the information developed for this problem formulation, these risk questions were refined to the questions identified in Table 4 of this report. Testable hypotheses and measures of effect for these questions will be developed in the WP/SAP. The risk questions of concern for the end of the BERA Problem Formulation are the following: - Does exposure to COPECs in soil adversely affect the abundance, diversity, productivity, and function of soil invertebrates? - Does exposure to COPECs in sediment and surface water adversely affect the abundance, diversity, productivity, and function of sediment and water-column invertebrates? #### 7.0 SCIENTIFIC MANAGEMENT DECISION POINT The final component of BERA problem formulation is an SMDP. The SMDP entails identification and agreement on the COPECs, assessment endpoints, exposure pathways, and risk questions that have been described in previous sections. As discussed above, the ecosystems potentially at risk for adverse effects are 1) localized areas of sediment within the Site barge slips (primarily due to PAHs); 2) localized wetland areas (primarily due to PAHs and pesticides), mainly northeast of the former surface impoundments and north of Marlin Avenue; and 3) a localized area of soils south of the former surface impoundments in the North Area. The list of COPECs that will be addressed in the WP/SAP to obtain additional site-specific information is presented in Table 5. #### 8.0 REFERENCES Adams, W.J., 1987. Bioavailability of Neutral Lipophilic Organic Chemicals Contained on Sediments: A Review. In K.L. Dickson, A.W. Maki, and W.A. Brungs, eds. Fate and Effects of Sediment-Bound Chemicals in Aquatic Systems. Sixth Pelleston Workshop. Pergamon Press: Elmsford, New York. Pp. 219-244. Alcoa, 2000. Final Baseline Risk Assessment Report, Alcoa (Point Comfort)/Lavaca Bay Superfund Site. May 19. Broman, D., C. Nat, I. Undbergh, and Y Zebuhr, 1990. An in situ study on the distribution, biotransformation and flux of polycyclic aromatic hydrocarbons (PAH) in an aquatic food chain (Seston - Mytilus edulis-Somaterla mollissima L.) from the Baltic: an ecotoxicological perspective. Environ. Toxicol. Chem. 9:429. Brazoria County Facts (Facts), 2006. "Pilots Take to Skies to Eradicate Mosquitoes." June 16. Brazoria County Facts (Facts), 2008a. "County District Responds to Mosquito Outbreak." September 8. Brazoria County Facts (Facts), 2008b. "State Adds to Mosquito-Spraying Efforts." September 26. Buchman, M.F., 2008. NOAA Screening Quick Reference Tables (SQuiRTs). NOAA OR&R Report 08-1, Seattle, WA. Office of Response and Restoration Division. National Atmospheric Administration. 34 pages. Carden, Clair A., 1982. Fish Marine Services, Freeport, Texas, Pond Closure Certification. August 18. Eadie, B.J., W.R. Faust, P.F. Landrum, and N.R. Morehead, 1985. Factors affecting bioconcentration of PAH by the dominant benthic organism of the Great Lakes. In H.W. Cooke and A.J. Dennis, eds. Polynuclear Aromatic Hydrocarbons: Eighth International Symposium on Mechanisms, Methods, and Metabolism. Battelle Press: Columbus, Ohio. Pp. 363-377. Eisler, R. 1986. Polychlorinated biphenyl hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and Wildlife Service Biological Report 85(1.7). Karickhoff, S.W., D.S. Brown, and T.A. Scott, 1979. Sorption of hydrophobic pollutants on natural sediments. Water Res. 13:241-248. Lake Jackson News, 1957. "Spray Plane Swats Mosquito via Two Day Oil Spray Job." August 8. Landrum, P.F., 1982. Uptake, deprivation and biotransformation of anthracene by the SCUD, Pontopoveia hoyi. Chemosphere. 11:1049-1057. Landrum, P.F., 1989. Bioavailability and toxicokinetics of polycyclic aromatic hydrocarbons sorbed to sediments for the amphipod Pontoporeia hoyi. Environ. Sci. Technol. 23:588-595. Losack, Billy, 2005. Personal communication with Pastor, Behling & Wheeler, LLC. July. McElroy, A.E., J.W. Farrington, and J.M. Teal, 1989. Bioavailability of PAHs in the aquatic environment. In U. Varanasi, ed. Metabolism of Polynuclear Aromatic Hydrocarbons (PAHs) In the Aquatic Environment. CRC Press: Boca Raton, Florida. Pp 1-39. Meador, J.P., E. Casillas, C.A. Sloan, and U. Varanasi, 1995a. Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev. Environ. Contam. Toxicol. 145:79-165. Meador, J.P., E. Casillas, C.A. Sloan, and U. Varanasi, 1995b. Comparative bioaccumulation of polycyclic aromatic hydrocarbons from sediment by two infaunal organisms. Mar. Ecol. Prog. Ser. 123:107-124. Neff, J.M.,1985. Polycyclic aromatic hydrocarbons. In G. Rand and S.R. Petrocelli, eds., Fundamentals of Aquatic Toxicology:: Methods and Applications. Hemisphere Publishing Co.: New York, New York. Niimi, A.J. and G.P. Dookhran, 1989. Dietary absorption efficiencies and elimination rates of polycyclic aromatic hydrocarbons in rainbow trout (Salmo gairdneri). Environ. Toxicol. Chem. 8:719:722. Pastor, Behling & Wheeler, LLC (PBW), 2006. Final RI/FS Work Plan, Gulfco Marine Maintenance Site, Freeport, Texas. May 16. Pastor, Behling & Wheeler, LLC (PBW), 2009. Final Nature and
Extent Data Report. Gulfco Marine Maintenance Superfund Site, Freeport, Texas. May 20. Pastor, Behling & Wheeler, LLC (PBW), 2010. Final Screening-Level Ecological Risk Assessment Report, Gulfco Marine Maintenance Site, Freeport, Texas. March 10. Suede, B.C., J.A. Boraczck, R.K. Peddicord, P.A. Clifford, and T.M. Dillon, 1994. Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Rev. Env. Contam. Toxicol. 136:21-89. Teeter, A.M., Brown, G.L., Alexander, M.P., Callegan, C.J., Sarruff, M.S., and McVan, D.C., 2002. Wind-wave resuspension and circulation of sediment and dredged material in Laguna Madre, Texas, ERDC/CHL TR-02-XX, U.S. Army Engineer Research and Development Center, Vicksburg, MS. Texas Department of Transportation (TxDOT), 2001. Transportation Multimodal Systems Manual. September. Texas Natural Resource Conservation Commission (TNRCC), 2002. HRS Documentation Record, Gulfco Marine Maintenance, Inc. Freeport, Brazoria County, Texas TXD 055 144 539. Prepared in cooperation with the U.S. Environmental Protection Agency. February. United States Army Corps of Engineers (USACE), 2006. Waterborne Commerce of the United States, Calendar Year 2006. IWR-WCUS-06-2. United States Army Corps of Engineers (USACE), 2008. October 2008 Hydrograph Bulletin, Channels With Project Depths Under 25 Feet, Galveston District. October, 2008. United States Army Corps of Engineers (USACE), 2009. Personal communication with Ms. Alicia Rea. July. United States Environment Protection Agency (EPA), 1980. Potential Hazardous Waste Site Inspection Report. July 15. United States Environment Protection Agency (EPA), 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments (Interim Final). OSWER Directive 9285.7-25. EPA/540/R-97/006. June. United States Environmental Protection Agency (EPA), 2002. Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites. Office of Emergency and Remedial Response. EPA 540-R-01-003. OSWER 9285.7-41. September. United States Environmental Protection Agency (EPA), 2009. National Recommended Water Quality Criteria. Office of Water, Office of Science and Technology. Accessed online 12/20/2009 at http://www.epa.gov/ost/criteria/wqctable/. United States Fish and Wildlife Service (USFWS), 2008. National Wetlands Inventory, Online Wetlands Mapper. http://wetlandsfws.er.usgs.gov/wtlnds/launch.html. Accessed July 9, 2008. Weston, D.P., 1990. Hydrocarbon bioaccumulation from contaminated sediment by the deposit feeding polychaete Abarenicola pacifica. Mar. Biol. 107:159-169. TABLE 1 UPDATED ECOLOGICAL HAZARD QUOTIENTS EXCEEDING ONE FOR SOIL | MEDIA | RECEPTOR | CHEMICAL OF
POTENTIAL
ECOLOGICAL | TOXICITY VALUE* | EXPOSURE POINT
CONCENTRATION
(mg/kg) | BASIS FOR EPC | EHQ | |-----------------|--------------------------|--|-----------------|--|--------------------|------------| | North Area Soil | Invertebrate (Earthworm) | 4,4'-DDT
Aroclor-1254 | NOAEL
NOAEL | 3.95E-01
6.35E+00 | Maximum
Maximum | 9.2
2.5 | #### Notes: EHQ - ecological hazard quotient NOAEL - no observable adverse effects level PAH - polynuclear aromatic hydrocarbon HPAH - high-molecular weight PAH *See Table D-3 in Appendix D for further information about the toxicity reference values used in the risk calculations. TABLE 2 UPDATED ECOLOGICAL HAZARD QUOTIENTS EXCEEDING ONE FOR SEDIMENT AND SURFACE WATER | | | | | EXPOSURE POINT | | | |------------------------|---------------------------|----------------------------------|------------------|----------------------|-----------|------------| | MEDIA | RECEPTOR | CHEMICAL OF POTENTIAL ECOLOGICAL | TOXICITY VALUE* | CONCENTRATION | BASIS FOR | EHQ | | | | CONCERN | | (mg/kg) | EPC | • | | Introducted Weterway | Delveheetee | 4 4' DDT | ERL | 2 225 02 | Maximum | 3.3 | | Intracoastal Waterway | Polychaetes | 4,4'-DDT
Acenaphthene | ERL | 3.32E-03
6.31E-02 | Maximum | 3.3
1.4 | | Sediment | (Capitella | · ' | | | Maximum | | | | | Benzo(a)anthracene | ERL | 3.95E-01 | Maximum | 1.5 | | | | Chrysene | ERL | 4.75E-01 | Maximum | 1.2 | | | | Dibenz(a,h)anthracene | ERL | 2.35E-01 | Maximum | 3.7 | | | | Fluoranthene | ERL | 8.04E-01 | Maximum | 1.3 | | | | Fluorene | ERL | 4.60E-02 | Maximum | 2.4 | | | | Hexachlorobenzene | AET | 3.19E-02 | Maximum | 5.3 | | | | Phenanthrene | ERL | 5.08E-01 | Maximum | 2.1 | | | | Pyrene | ERL | 8.62E-01 | Maximum | 1.3 | | | | LPAH | ERL | 7.10E-01 | Maximum | 1.3 | | | | HPAH | ERL | 4.91E+00 | Maximum | 2.9 | | | | Total PAH | ERL | 5.62E+00 | Maximum | 1.4 | | | | Dibenz(a,h)anthracene | midpoint ERL/ERM | 2.35E-01 | Maximum | 1.5 | | Wetlands Sediment | Polychaetes | 2-Methylnaphthalene | ERL | 4.30E-01 | Maximum | 6.1 | | | (Capitella | 4,4'-DDT | ERL | 9.22E-03 | Maximum | 8 | | | (| Acenaphthene | ERL | 1.33E-01 | Maximum | 8.3 | | | | Acenaphthylene | ERL | 5.45E-01 | Maximum | 12.4 | | | | Anthracene | ERL | 3.34E-01 | Maximum | 3.9 | | | | Benzo(a)anthracene | ERL | 9.93E-01 | Maximum | 3.8 | | | | Benzo(a)pyrene | ERL | 1.30E+00 | Maximum | 3 | | | | Benzo(g,h,i)perylene | AET | 1.94E+00 | Maximum | 2.9 | | | | Chrysene | ERL | 4.05E+00 | Maximum | 10.5 | | | | Dibenz(a,h)anthracene | ERL | 2.91E+00 | Maximum | 45.9 | | | | Endrin Aldehyde | ERL | 1.00E-02 | Maximum | 3.8 | | | | Endrin Ketone | ERL | 1.30E-02 | Maximum | 4.9 | | | | Fluoranthene | ERL | 2.17E+00 | Maximum | 3.6 | | | | Fluorene | ERL | | | 7.3 | | | | 1 | ERL | 1.39E-01 | Maximum | 7.3
1.6 | | | | gamma-Chlordane | | 3.60E-03 | Maximum | | | | | Indeno(1,2,3-cd)pyrene | AET | 1.94E+00 | Maximum | 3.2 | | | | Nickel | ERL | 2.77E-01 | Maximum | 1.3 | | | | Phenanthrene | ERL | 1.30E+00 | Maximum | 5.4 | | | | Pyrene | ERL | 1.64E+00 | Maximum | 2.5 | | | | LPAH | ERL | 1.15E+00 | Maximum | 2.1 | | | | НРАН | ERL | 1.39E+01 | Maximum | 8.2 | | | | Total PAHs | ERL | 1.51E+01 | Maximum | 3.8 | | | | 2-Methylnaphthalene | midpoint ERL/ERM | 4.30E-01 | Maximum | 1.2 | | | | Acenaphthylene | midpoint ERL/ERM | 5.45E-01 | Maximum | 1.6 | | | | Benzo(a)anthracene | midpoint ERL/ERM | 9.93E-01 | Maximum | 1.1 | | | | Benzo(a)pyrene | midpoint ERL/ERM | 1.30E+00 | Maximum | 1.3 | | | | Chrysene | midpoint ERL/ERM | 4.04E+00 | Maximum | 2.5 | | | | Dibenz(a,h)anthracene | midpoint ERL/ERM | 2.91E+00 | Maximum | 18 | | | | Phenanthrene | midpoint ERL/ERM | 1.30E+00 | Maximum | 1.5 | | | | НРАН | midpoint ERL/ERM | 1.39E+01 | Maximum | 2.5 | | Wetlands Surface Water | Aquatic
Invertebrates | Dissolved copper | TSWQS | 1.10E-02 | Maximum | 3.1 | | Pond Sediment | Polychaetes
(Capitella | 4,4'-DDT | ERL | 1.57E-03 | Maximum | 1.3 | Notes: ERL - effects range low ERM - effects range medium AET - apparent effects threshold EHQ - ecological hazard quotient PAH - polynuclear aromatic hydrocarbon LPAH - low-molecular weight PAH HPAH - high-molecular weight PAH ^{*}See Tables E-2, F-2, and G-2 in Appendices for further information about the toxicity reference values used in the risk calculations. ## **TABLE 3 REVISED SEDIMENT TOXICITY VALUES** | Chemicals of Potential Ecological Concern | Midpoint of ERL/ERM | |---|---------------------| | | | | 4,4'-DDT | 0.032045 | | Acenaphthene | 0.258 | | Acenaphthylene | 0.342 | | Anthracene | 0.59265 | | Arsenic | 39.1 | | Benzo(a)anthracene | 0.9305 | | Benzo(a)pyrene | 1.015 | | Benzo(g,h,i)perylene * | 1.8 | | Chrysene | 1.592 | | Copper | 152 | | Dibenz(a,h)anthracene | 0.1617 | | Endrin Aldehyde ** | 0.01 | | Endrin Ketone ** | 0.01 | | Fluoranthene | 2.85 | | Fluorene | 0.2795 | | gamma-Chlordane | 0.003525 | | Hexachlorobenzene * | 0.006 | | Indeno(1,2,3-cd)pyrene * | 0.6 | | Lead | 132.35 | | Nickel | 36.25 | | Phenanthrene | 0.87 | | Pyrene | 1.6325 | | Zinc | 280 | | LPAH | 1.856 | | HPAH | 5.65 | | TOTAL PAHs | 11.86105 | | | | ### Notes: Values from NOAA SQUIRTS table (Buchman, 2009). ^{*} No Effects Range -Low (ERL) or Effects Range - Medium (ERM) available, so Apparent Effects Treshold (AET) is represented. ^{**} midpoint of freshwater sediment Threshold Effects Level (TEL) and Probable Effects Level (PEL). No marine sediment toxicity benchmark values available. TABLE 4 ASSESSMENT ENDPOINTS AND RISK QUESTIONS | Guild | Receptor of Potential
Concern | Assessment Endpoint for BERA | Ecological Risk Questions | | |-------------------------|----------------------------------|---|--|--| | Invertebrates | Earthworm | Protection of soil invertebrate community from uptake and direct toxic effects on detritivore abundance, diversity, productivity from COPECs in soil. | Does exposure to COPECs in soil adversely affect the abundance, diversity, productivity, and function? | | | Benthos and zooplankton | Polychaetes | Protection of benthic and water-column invertebrate communities from uptake and direct toxic effects on abundance, diversity, and productivity from COPECs in sediment and surface water. | Does exposure to CPOECs in sediment and surface water adversely affect the abundance, diversity, productivity, and function? | | TABLE 5 COPECS AND MEDIA RECOMMENDED FOR FURTHER EVALUATION IN THE WORK PLAN FOR THE BASELINE ECOLOGICAL RISK ASSESSMENT | MEDIA | ASSESSMENT ENDPOINT | CHEMICAL OF POTENTIAL ECOLOGICAL CONCERN | |--------------------------------|--
--| | North Area Soil | Direct Toxicity to Soil Invertebrate | 4,4'-DDT
Aroclor-1254 | | Intracoastal Waterway Sediment | Direct Toxicity to Benthic Receptor | 4,4'-DDT Acenaphthene Benzo(a)anthracene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Hexachlorobenzene Phenanthrene Pyrene LPAH HPAH Total PAH | | Wetlands Sediment | Direct Toxicity to Benthic Receptor | 2-Methylnaphthalene 4,4'-DDT Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Endrin Aldehyde Endrin Ketone Fluoranthene Fluorene gamma-Chlordane Indeno(1,2,3-cd)pyrene Nickel Phenanthrene Pyrene LPAH HPAH Total PAHs | | Wetlands Surface Water | Direct Toxicity to Aquatic Invertebrates | Dissolved Copper | | Pond Sediment | Direct Toxicity to Benthic Receptor | 4,4'-DDT | Notes: PAH - polynuclear aromatic hydrocarbon LPAH - low-molecular weight PAH HPAH - high-molecular weight PAH ## APPENDIX A TABLE 29 (COPECS AND MEDIA RECOMMENDED FOR FURTHER EVALUATION IN THE BASELINE ECOLOGICAL RISK ASSESSMENT) FROM SLERA TABLE 29 COPECS AND MEDIA RECOMMENDED FOR FURTHER EVALUATION IN THE BASELINE ECOLOGICAL RISK ASSESSMENT | MEDIA | ASSESSMENT ENDPOINT | CHEMICAL OF POTENTIAL ECOLOGICAL CONCERN | |---------------------------------|--|---| | South Area Soil | Direct Toxicity to Soil Invertebrate | 4,4'-DDD 4,4'-DDE 4,4'-DDT Aroclor-1254 Barlum Chromlum Copper Zinc | | North Area Soil | Direct Toxicity to Soil Invertebrate | Total HPAH 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc | | Intracoastal Waterway Sediment | Direct Toxicity to Benthic Receptor | 4,4'-DDT Acenaphthene Benzo(a)anthracene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Hexachlorobenzene Phenanthrene Pyrene LPAH HPAH Total PAH | | Wetlands Sediment | Direct Toxicity to Benthic Receptor | 2-Methylnaphthalene 4,4'-DDT Acenaphthene Acenaphthylene Anthracene Arsenic Benzo(a)aphtracene Benzo(a)pyrene Benzo(a)h,i)perylene Chrysene Copper Dibenz(a,h)anthracene Endrin Aldehyde Endrin Ketone Fluoranthene Fluorene gamma-Chlordane Indeno(1,2,3-cd)pyrene Lead Nickel Phenanthrene Pyrene Zinc LPAH HPAH Total PAHs | | Wetlands Surface Water | Direct Toxicity to Aquatic Invertebrate | Acrolein
Copper | | Pond Sediment | Direct Toxicity to Benthic Receptor | 4,4'-DDT
Zinc | | Pond Sediment and Surface Water | Food Chain (Ingestion) Effects for the Avian Carnivore (Sandpiper) | Lead | | Pond Surface Water | Direct Toxicity to Aquatic Invertebrate | Silver | Notes: PAH - polynuclear aromatic hydrocarbon LPAH - low-molecular weight PAH HPAH - high-molecular weight PAH APPENDIX B BACKGROUND COMPARISONS ## APPENDIX B-1 BACKGROUND COMPARISONS SOUTH OF MARLIN SOIL | BARIUM - SOUTH OF MARLIN SOIL | | | | | | | | | |-------------------------------|---|-------|-----|-------|-------|----|--|--| | Compound | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples | | | | | | | | | Barium | 237.4 | 274.8 | 166 | 333.1 | 288.1 | 10 | | | Calculated Difference = 95.7 Standard Error of the Difference = 112.8814519 Degree of Freedom = 174 t = 0.847792072 p = 0.1989 calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean Data sets significantly different = No | CHROMIUM - SOUTH OF MARLIN SOIL | | | | | | | | |---|-------|-------|-----|------|------|----|--| | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Conc. Number of Background Samples | | | | | | | | | Chromium | 13.53 | 12.49 | 166 | 15.2 | 3.02 | 10 | | Calculated Difference = 1.67 Standard Error of the Difference = 3.176242508 Degree of Freedom = 174 t = 0.525778493 0.2998 p = calculated at www.stat.tamu.edu/~west/applets/tdemo.html Data sets significantly different = No site soil mean is not statistically less than background mean | COPPER - SOUTH OF MARLIN SOIL | | | | | | | | |--|-------|-------|-----|-------|-------|----|--| | Compound Site Conc. Samples Samples Samples Site Conc. Samples Site Conc. Si | | | | | | | | | Copper | 24.26 | 46.76 | 166 | 12.12 | 3.955 | 10 | | Calculated Difference = 12.14 Standard Error of the Difference = 11.40971991 Degree of Freedom = 174 t = 1.064005085 p = 0.1444 calculated at www.stat.tamu.edu/~west/applets/tdemo.html Data sets significantly different = No site soil mean is not statistically greater than background mean | ZINC - SOUTH OF MARLIN SOIL | | | | | | | | |--|-------|-------|-----|-----|-------|----|--| | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Standard Deviation Samples Conc. Mean Standard Deviation | | | | | | | | | Zinc | 433.8 | 786.8 | 166 | 247 | 364.6 | 10 | | Calculated Difference = 186.8 Standard Error of the Difference = 222.9535182 Degree of Freedom = 174 t = 0.8378428 p = 0.2016 calculated at www.stat.tamu.edu/~west/applets/tdemo.html Data sets significantly different = No site soil mean is not statistically greater than background mean ## APPENDIX B-2 BACKGROUND COMPARISONS NORTH OF MARLIN SOIL | BARIUM - NORTH OF MARLIN SOIL | | | | | | | | | |---|-------|------|----|-------|-------|----|--|--| | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Standard Deviation Samples | | | | | | | | | | Barium | 142.1 | 95.9 | 36 | 333.1 | 288.1 | 10 | | | Calculated Difference = 191 Standard Error of the Difference = 94.02738869 Degree of Freedom = p = t = 2.031323029 0.0242 calculated at www.stat.tamu.edu/~west/applets/tdemo.html Data sets significantly different = Yes site surface soil mean is statistically less than background mean | CHROMIUM - NORTH OF MARLIN SOIL | | | | | | | | | |---------------------------------|--|------|----|------|------|----|--|--| | Compound | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Samples Conc. Mean Standard Deviation Samples | | | | | | | | | Chromium | 17.17 | 19.6 | 36 | 15.2 | 3.02 | 10 | | | Calculated Difference = 1.97 Standard Error of the Difference = 4.848678898 Degree of Freedom = 44 t = 0.406296239 p = 0.3432 calculated at www.stat.tamu.edu/~west/applets/tdemo.html Data sets significantly different = No site soil mean is not statistically greater than background mean | COPPER - NORTH OF MARLIN SOIL | | | | | | | | |
---|------|------|----|-------|-------|----|--|--| | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Standard Deviation Samples Standard Deviation Samples | | | | | | | | | | Copper | 18.7 | 31.9 | 36 | 12.12 | 3.955 | 10 | | | Calculated Difference = 6.58 Standard Error of the Difference = 7.837321881 Degree of Freedom = t = 0.83957251 p = 0.2028 calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No | ZINC - NORTH OF MARLIN SOIL | | | | | | | | |---|-------|-------|----|-----|-------|----|--| | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples | | | | | | | | | Zinc | 242.5 | 929.4 | 36 | 247 | 364.6 | 10 | | Calculated Difference = 4.5 Standard Error of the Difference = 253.1879948 Degree of Freedom = t = 0.017773355 0.4929 p = calculated at www.stat.tamu.edu/~west/applets/tdemo.html Data sets significantly different = No site soil mean is not statistically less than background mean ## APPENDIX B-3 BACKGROUND COMPARISONS WETLAND SEDIMENT | ARSENIC - WETLAND SEDIMENT | | | | | | | | | | |--|-------|-------|----|-------|-------|----|--|--|--| | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Samples Conc. Mean Standard Deviation Samples | | | | | | | | | | | Arsenic | 2.534 | 2.465 | 48 | 3.438 | 1.792 | 10 | | | | Calculated Difference = 0.904 Standard Error of the Difference = 0.823742314 Degree of Freedom = 56 t = 1.097430573 0.1387 calculated at www.stat.tamu.edu/~west/applets/tdemo.html p = Data sets significantly different = No site soil mean is not statistically less than background mean | COPPER - WETLAND SEDIMENT | | | | | | | | | | | |---------------------------|--|------|----|-------|-------|----|--|--|--|--| | Compound | Compound Site Conc. Site Conc. Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Standard Deviation Samples Standard Deviation Samples | | | | | | | | | | | Copper | 14.49 | 8.49 | 48 | 12.12 | 3.955 | 10 | | | | | Calculated Difference = 2.37 Standard Error of the Difference = 2.409192475 Degree of Freedom = 56 t = 0.983732111 p = 0.1647 calculated at www.stat.tamu.edu/~west/applets/tdemo.html Data sets significantly different = No site soil mean is not statistically greater than background mean | LEAD - WETLAND SEDIMENT | | | | | | | | | | |--|-------|-------|----|-------|-------|----|--|--|--| | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Samples Conc. Mean Standard Deviation Samples | | | | | | | | | | | Lead | 25.36 | 34.13 | 48 | 13.43 | 1.547 | 10 | | | | Calculated Difference = 11.93 Standard Error of the Difference = 8.292183972 Degree of Freedom = 56 t = 1.438704211 p = 0.0779 calculated at www.stat.tamu.edu/~west/applets/tdemo.html Data sets significantly different = No site surface soil mean is not statistically greater than background mean | ZINC - WETLAND SEDIMENT | | | | | | | | | | |-------------------------|--------------------|-------------------------------|----------------|-----|-------------------------------------|------------------------------|--|--|--| | Compound | Site Conc.
Mean | Site Conc. Standard Deviation | Number of Site | | Background Conc. Standard Deviation | Number of Background Samples | | | | | Zinc | 139.1 | 160.9 | 53 | 247 | 364.6 | 3amples
10 | | | | Calculated Difference = 107.9 Standard Error of the Difference = 121.7217613 Degree of Freedom = 61 t = 0.886447902 p = 0.1896 calculated at www.stat.tamu.edu/~west/applets/tdemo.html Data sets significantly different = No site soil mean is not statistically less than background mean ## APPENDIX B-4 BACKGROUND COMPARISONS POND SEDIMENT | ZINC - POND SEDIMENT | | | | | | | | | | |----------------------|--------------------|-------------------------------|----------------|--------------------------|-------------------------------------|------------------------------|--|--|--| | Compound | Site Conc.
Mean | Site Conc. Standard Deviation | Number of Site | Background
Conc. Mean | Background Conc. Standard Deviation | Number of Background Samples | | | | | Zinc | 332.3 | 407.7 | 8 | 247 | 364.6 | 10 | | | | Calculated Difference = 85.3 Standard Error of the Difference = 151.8911495 Degree of Freedom = 16 t = 0.561586375 p = 0.2910 calculated at www.stat.tamu.edu/~west/applets/tdemo.html Data sets significantly different = No site soil mean is not statistically greater than background mean # TABLE C-1 EXPOSURE POINT CONCENTATION (mg/kg) SOIL SOUTH OF MARLIN AVE.* | Parameter | Exposure Point Concentration | Statistic Used | |--------------|------------------------------|----------------------| | 4,4-DDD | 5.08E-02 | 97.5% KM (Chebyshev) | | 4,4'-DDE | 2.81E-03 | 95% KM (BCA) | | 4,4'-DDT | 9.27E-03 | 97.5% KM (Chebyshev) | | Aroclor-1254 | 7.73E-01 | 97.5% KM (Chebyshev) | | Barium | 3.30E+02 | 95% Chebyshev | | Chromium | 1.78E+01 | 95% Chebyshev | | Copper | 4.01E+01 | 95% KM (Chebyshev) | | Zinc | 8.15E+02 | 97.5% Chebyshev | | TOTAL PAHs | 8.61E+00 | | ## Notes: ^{*} Soil data includes soil collected from 0 to 2 feet below ground surface. # TABLE C-2 EXPOSURE POINT CONCENTATION (mg/kg) SURFACE SOIL SOUTH OF MARLIN AVE.* | Parameter | 95% UCL | Statistic Used | |--------------|------------|----------------------| | 4,4'-DDD | < 2.70E-04 | median | | 4,4'-DDE | 7.52E-03 | 97.5% KM (Chebyshev) | | 4,4'-DDT | 1.03E-02 | 97.5% KM (Chebyshev) | | Aroclor-1254 | 7.64E-01 | 97.5% KM (Chebyshev) | | Barium | 5.84E+02 | 97.5% KM (Chebyshev) | | Chromium | 2.68E+01 | 97.5% Chebyshev | | Copper | 5.22E+01 | 97.5% KM (Chebyshev) | | Zinc | 1.06E+03 | 97.5% Chebyshev | | TOTAL PAHs | 1.06E+04 | | ## Notes: NS - Not sampled in surface soil. ^{*} Surface soil data includes soil collected from 0 to 0.5 feet below ground surface. ## **TABLE C-3 TOXICITY VALUES** | | | | | Small Mammalian | | | | 1 | | Small Mammalian | T | | Avian | | 1 | Large Avian | | | |--------------|--------------|------------|---|------------------|--------------|---|--------------------|--------------|---|------------------|--------------|--|--------------------|--------------
--|-----------------|--------------|---| | | Invertebrate | | | Herbivore (Deer | | | Large Mammalian | | | Omnivore (Least | | | Herbivore/Omnivore | | | Carnivore (Red- | | | | | (Earthworm) | | | Mouse) (mg/kgBW- | | | Carnivore (Coyote) | | | Shrew) (mg/kgBW- | | | (American Robin) | | | tailed Hawk) | | | | Parameter | (mg/kg) | Ref. | Comments | day) | Ref. | Comments | (mg/kgBW-day) | Ref. | Comments | day) | Ref. | Comments | (mg/kgBW-day) | Ref. | Comments | (mg/kgBW-day) | Ref. | Comments | | | | | | | | UP-1 I - INOAFI | | | 18-1 | | | LEST SELECTION OF THE PROPERTY | | | LEST SELECTION OF THE PROPERTY | | | 15-111-110451 | | | | | | | | Highest bounded NOAEL for growth and | | | Highest bounded
NOAEL for growth and | | | Highest bounded NOAEL
for growth and reproduction | | | Highest bounded NOAEL for growth and | | | Highest bounded NOAEL for growth and | | | | | Acute median LC50 in | | | reproduction lower than | | | reproduction lower than | | | lower than the lowest | | | reproduction lower than | | | reproduction lower than the | | | | | common cricket (dose 4.3 | | | the lowest bounded | | | the lowest bounded | | | bounded LOAEL for | | | the lowest bounded | | | lowest bounded LOAEL for | | | | | with uncertainty factor of | | | LOAEL for reproduction. | | | LOAEL for reproduction. | | | reproduction, growth, and | | | LOAEL for reproduction. | | | reproduction, growth, and | | 4,4-DDD | 4.30E-02 | EPA, 2007a | 0.01) | 1.47E-01 | EPA, 2007a | growth, and survival | 1.47E-01 | EPA, 2007a | growth, and survival | 1.47E-01 | EPA, 2007a | survival | 2.27E-01 | EPA, 2007a | growth, and survival | 2.27E-01 | EPA, 2007a | survival | | | | | | | | LIST STATE OF TAXABLE | | | I Pata and a safe to | | | LIST STATE OF THE PARTY | | | LIST AND A FILE | | | LI'LL AND AFI | | | | | | | | Highest bounded NOAEL for growth and | | | Highest bounded
NOAEL for growth and | | | Highest bounded NOAEL
for growth and reproduction | | | Highest bounded NOAEL for growth and | | | Highest bounded NOAEL for growth and | | | | | Acute median LC50 in | | | reproduction lower than | | | reproduction lower than | | | lower than the lowest | | | reproduction lower than | | | reproduction lower than the | | | | | common cricket (dose 4.3 | | | the lowest bounded | | | the lowest bounded | | | bounded LOAEL for | | | the lowest bounded | | | lowest bounded LOAEL for | | | | | with uncertainty factor of | | | LOAEL for reproduction. | | | LOAEL for reproduction. | | | reproduction, growth, and | | | LOAEL for reproduction. | | | reproduction, growth, and | | 4,4'-DDE | 4.30E-02 | EPA, 2007a | 0.01) | 1.47E-01 | EPA, 2007a | growth, and survival | 1.47E-01 | EPA, 2007a | growth, and survival | 1.47E-01 | EPA, 2007a | survival | 2.27E-01 | EPA, 2007a | growth, and survival | 2.27E-01 | EPA, 2007a | survival | Highest bounded NOAEL | | | Highest bounded | | | Highest bounded NOAEL | | | Highest bounded NOAEL | | | Highest bounded NOAEL | | | | | | | | for growth and | | | NOAEL for growth and | | | for growth and reproduction | | | for growth and | | | for growth and | | | | | Acute median LC50 in | | | reproduction lower than | | | reproduction lower than | | | lower than the lowest | | | reproduction lower than | | | reproduction lower than the | | | | | common cricket (dose 4.3 | | | the lowest bounded | | | the lowest bounded | | | bounded LOAEL for | | | the lowest bounded | | | lowest bounded LOAEL for | | 4.4'-DDT | 4.30E-02 | EPA. 2007a | with uncertainty factor of 0.01) | 1.47E-01 | EPA. 2007a | LOAEL for reproduction,
growth, and survival | 1.47E-01 | EPA. 2007a | LOAEL for reproduction,
growth, and survival | 1.47E-01 | EPA. 2007a | reproduction, growth, and survival | 2.27E-01 | EPA. 2007a | LOAEL for reproduction,
growth, and survival | 2.27E-01 | EPA, 2007a | reproduction, growth, and
survival | | 4,4 -001 | 4.30E-02 | EPA, 2007a | 0.01) | 1.47 E-01 | EPA, 2007a | 3 , | 1.47 E-01 | EPA, 2007a | 3 / | 1.47E-01 | EPA, 2007a | Survivai | 2.27 E-01 | EPA, 2007a | growth, and survival | 2.27 E-01 | EFA, 2007a | Survivai | | | | | A | | | Chronic LOAEL for | | | Chronic LOAEL for | | | 01 1 0 4 51 6 | | | | | | | | | | | Acute median LC50 in
earthworms (dose 251 with | | | reproduction in mouse
with an uncertainty factor | | | reproduction in mouse
with an uncertainty | | | Chronic LOAEL for
reproduction in mouse with | | | | | | | | Aroclor-1254 | 2.51E+00 | EPA. 1999 | uncertainty factor of 0.01) | 1.55E-01 | Sample, 1996 | | 1.55E-01 | Sample, 1996 | | 1.55E-01 | Sample 1996 | an uncertainty factor of 0.1 | 1.80E-01 | Sample, 1996 | | 1.80E-01 | Sample, 1996 | | | A100101-1254 | 2.512+00 | LI A, 1999 | uncertainty factor or 0.01) | 1.55E-01 | Sample, 1990 | 01 0.1 | 1.55E-01 | Sample, 1990 | lactor or o. i | 1.55E-01 | Sample, 1990 | an uncertainty factor of 0.1 | 1.00L-01 | Sample, 1990 | | 1.00L-01 | Sample, 1990 | | | | | | Geometric mean of the EC20 | values for three test species | | | Geometric mean of | | | | | | Geometric mean of NOAEL | | | | | | | | Davis and | 3.30E+02 | EPA. 2005a | under three separate test
conditions of pH | E 40E : 04 | EPA, 2005q | NOAEL values for
reproduction and growth | 4.10E-01 | EPA. 1999 | | 5.18E+01 | EPA. 2005a | values for reproduction and growth | 1.91E+01 | EPA. 1999 | | 3.15E+01 | EPA, 1999 | | | Barium | 3.30E+02 | EPA, 2005g | Maximum acceptable | 5.18E+01 | EPA, 2005g | reproduction and growth | 4.10E-01 | EPA, 1999 | | 5.18E+U1 | EPA, 2005g | growth | 1.91E+01 | EPA, 1999 | | 3.15E+01 | EPA, 1999 | | | | | | toxicant concentration | | | Geometric mean of | | | Geometric mean of | | | Geometric mean of NOAEL | | | Geometric mean of the | | | Geometric mean of the | | | | | (MATC) for reproductive | | | NOAEL values for | | | NOAEL values for | | | values for reproduction and | | | NOAEL values for | | | NOAEL values for | | Chromium | 5.70E+01 | EPA, 2005c | effects in earthworm | 2.40E+00 | EPA, 2005c | reproduction and growth | 2.40E+00 | EPA, 2005c | reproduction and growth | 2.40E+00 | EPA, 2005c | growth | 2.66E+00 | EPA, 2005c | reproduction and growth | 2.66E+00 | EPA, 2005c | reproduction and growth | Highest bounded NOAEL | | | Highest bounded | | | Highest bounded NOAEL | | | Highest bounded NOAEL | 1 | 1 | Highest bounded NOAEL | | | | | 0 | | | for growth and | | | NOAEL for growth and | | | for growth and reproduction | | | for growth and | | | for growth and | | | | | Geometric mean of the
MATC and EC10 values for | | | reproduction lower than
the lowest bounded | | | reproduction lower than
the lowest bounded | | | lower than the lowest
bounded LOAEL for | | | reproduction lower than
the lowest bounded | ĺ | 1 | reproduction lower than the
lowest bounded LOAEL for | | | | | six test species under | | | LOAEL for reproduction, | | | LOAEL for reproduction. | | | reproduction, growth, and | | | LOAEL for reproduction, | ĺ | 1 | reproduction, growth, and | | Copper | 8.00E+01 | EPA. 2007c | different test species | 5.60E+00 | EPA. 2007c | growth, and survival | 5.60E+00 | EPA, 2007c | growth, and survival | 5.60E+00 | EPA. 2007c | survival | 4.05E+00 | EPA, 2007c | | 4.05E+00 | EPA, 2007c | survival | | | 0.002.01 | , | Geometric mean of the | 0.002.00 | 2.7., 20070 | g. 31141, G.14 CG. 11441 | 5.552.755 | 2. 7., 20070 | g. swan, and carvival | 5.552.55 | 2.7., 20070 | - Carrirai | | 2.7., 20070 | Geometric mean of | | 2.7., 20070 | Geometric mean of NOAEL | | | | | MATC and EC10 values for | | | Geometric mean of | | | Geometric mean of | | | Geometric mean of NOAEL | | | NOAEL values within the | 1 | 1 | values within the | | 1 | | | three test species under | | | NOAEL values for | | |
NOAEL values for | | | values for reproduction and | | | reproductive and growth | 1 | 1 | reproductive and growth | | Zinc | 1.20E+02 | EPA, 2007e | different test species | 7.54E+01 | EPA, 2007e | reproduction and growth | 7.54E+01 | EPA, 2007e | reproduction and growth | 7.54E+01 | EPA, 2007e | growth | 6.61E+01 | EPA, 2007e | effect groups | 6.61E+01 | EPA, 2007e | effect groups | | TOTAL PAHs | | | | | 1 | | | | | | | | | | | | | | EPA, 2007a -- DDT EPA, 2007b -- PAHs EPA, 2007c -- Copper EPA, 2007c -- Zinc EPA, 2005c -- Chromium EPA, 2005g -- Barium # TABLE C-4 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SOIL SOUTH OF MARLIN Invertebrate (EARTHWORM) | | D (1) (1) | | D () | |--------------------|----------------------------------|--------------------------|---------------| | Parameter | Definition | | Default | | Sc | Soil Concentration (mg/kg) | | see below | | TRV | Toxicity Reference Value (mg/kg) | | see Table C-3 | | Chemical | Sc | Invertebrate (Earthworm) | EHQ⁺ | | 4,4-DDD | 1.12E+00 | 4.30E-02 | 2.60E+01 | | 4,4'-DDE | 6.93E-02 | 4.30E-02 | 1.61E+00 | | 4,4'-DDT | 1.13E-01 | 4.30E-02 | 2.63E+00 | | Aroclor-1254 | 1.15E+01 | 2.51E+00 | 4.58E+00 | | Barium | 2.18E+03 | 3.30E+02 | 6.61E+00 | | Chromium | 1.36E+02 | 5.70E+01 | 2.39E+00 | | Copper | 4.87E+02 | 8.00E+01 | 6.09E+00 | | | 7.65E+03 | 1.20E+02 | 6.38E+01 | | Zinc
TOTAL PAHs | 7.48E+01 | | | Notes: ^{*}EPC for sedentary receptor is maximum measured concentration. ^{*}Shading indicates HQ > 1. ## TABLE C-5 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN Small Mammalian Herbivore (DEER MOUSE) | | | aliali Helbivole (D | | | | |--------------------|--|----------------------|----------------|---------------------------------------|----------------------| | SOIL INGESTIO | N | | | | | | INTAKE = (Sc * I | IR * AF * AUF) / (BW) | | | | | | Parameter | Definition | | Value | Reference | | | Intake | Intake of chemical (mg/kg-day) | | calculated | | | | Sc | Soil concentration (mg/kg) | | See Table C-1 | | | | IR | Maximum Ingestion rate of soil (kg/day)* | | 1.50E-06 | EPA, 1993 | | | IR _{max} | Mean Ingestion rate of soil (kg/day)* | | 1.50E-06 | EPA, 1993 | | | AF | Chemical Bioavailability in soil (unitless) | | 1 | EPA, 1997 | | | AUF
BW | Area Use Factor Minimum Body weight (kg) | | 1
1.50E+02 | EPA, 1997
Davis and Schmidly, 2009 | | | Bw _{mean} | Mean Body weight (kg) | | 2.35E-02 | Davis and Schmidly, 2009 | | | - ··illeali | mean year (ng) | | | David and Dominary, 2000 | | | | | | | | Refined | | Chemical | | Sc | | Intake | Intake | | 4,4-DDD | | 5.08E-02 | | 5.08E-10 | 3.24E-06 | | 4,4'-DDE | | 2.81E-03 | | 2.81E-11 | 1.79E-07 | | 4,4'-DDT | | 9.27E-03 | | 9.27E-11 | 5.92E-07 | | Aroclor-1254 | | 7.73E-01 | | 7.73E-09 | 4.93E-05 | | Barium | | 3.30E+02 | | 3.30E-06 | 2.11E-02 | | Chromium | | 1.78E+01 | | 1.78E-07 | 1.13E-03 | | Copper
Zinc | | 4.01E+01 | | 4.01E-07 | 2.56E-03
5.20E-02 | | TOTAL PAHs | | 8.15E+02
8.61E+00 | | 8.15E-06
8.61E-08 | 5.20E-02
5.50E-04 | | TOTALTATIS | | 0.01L+00 | | 0.012-00 | 3.30L-04 | | FOOD INGESTION | ON | | | | | | INTAKE = ((Ca * | IR * DFa * AUF) / (BW) + ((Cp * IR * DFs *AU | F)/(BW)) | | | | | Parameter | Definition | | Value | Reference | | | Intake | Intake of chemical (mg/kg-day) | | calculated | | | | Ca | Arthropod concentration (mg/kg) | | see Table C-15 | | | | Ср | Plant concentration (mg/kg) | | see Table C-15 | EDA 4002 | | | IR | Maximum Ingestion rate of of food (kg/day)* | | 7.49E-05 | EPA, 1993 | | | IR _{max} | Mean Ingestion rate of of food (kg/day)* | | 7.49E-05 | EPA, 1993 | | | Dfa | Dietary fraction of arthropods (unitless) | | 1.00E-01 | Prof Judgment | | | Dfs
AUF | Dietary fraction of plants, seeds and other ve | getation (unitiess) | 9.00E-01 | Prof Judgment | | | BW | Area Use Factor Minimum Body weight (kg) | | 1
1.50E-02 | EPA, 1997
Davis and Schmidly, 2009 | | | Bw _{mean} | Mean Body weight (kg) | | 2.35E-02 | Davis and Schmidly, 2009 | | | D**mean | Mean body weight (kg) | | 2.33L-02 | Davis and Schillidiy, 2009 | | | | | | | | Refined | | Chemical | Arthropod | Plant | | Intake | Intake | | 4,4-DDD | 6.40E-02 | 4.76E-04 | | 3.41E-05 | 2.18E-05 | | 4,4'-DDE | 3.54E-03 | 2.63E-05 | | 1.89E-06 | 1.20E-06 | | 4,4'-DDT | 1.17E-02 | 8.69E-05 | | 6.22E-06 | 3.97E-06 | | Aroclor-1254 | 8.73E-01 | 7.73E-03 | | 4.71E-04 | 3.01E-04 | | Barium | 7.27E+01 | 4.96E+01 | | 2.59E-01 | 1.65E-01 | | Chromium | 1.78E-01 | 1.33E-01 | | 6.87E-04 | 4.38E-04 | | Copper | 1.60E+00 | 1.60E+01 | | 7.28E-02 | 4.65E-02 | | Zinc
TOTAL PAHs | 4.57E+02
6.03E-01 | 9.78E-10
1.72E-01 | | 2.28E-01
1.08E-03 | 1.46E-01
6.86E-04 | | TOTAL INTAKE | | | | | | | | | | | | | | INTAKE = Soil Ir | ntake + Food Intake | | | | | | | | | | Total | Refined | | Chemical | | | | Intake | Intake | | 4,4-DDD | | | | 3.41E-05 | 2.50E-05 | | 4,4'-DDE | | | | 1.89E-06 | 1.38E-06 | | 4,4'-DDT | | | | 6.22E-06 | 4.56E-06 | | Aroclor-1254 | | | | 4.71E-04 | 3.50E-04 | | Barium | | | | 2.59E-01 | 1.86E-01 | | Chromium | | | | 6.87E-04 | 1.57E-03 | | Copper | | | | 7.28E-02 | 4.91E-02 | | Zinc | | | | 2.28E-01 | 1.98E-01 | | TOTAL PAHs | | | | 1.08E-03 | 1.24E-03 | Notes: * Expressed in dry weight. ## TABLE C-6 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN Large Mammalian Carnivore (COYOTE) | SOIL INGESTION | | | | | | | |----------------------|---|----------|----------------------|------------------|------------------------|----------------------| | INTAKE = (Sc * IR * | AF * AUF) / (BW) | | | | | | | (44 | | | | | | | | Parameter | Definition | | | Value | Reference | | | Intake | Intake of chemical (mg/kg-day) | | | calculated | | | | Sc
IR | Soil concentration (mg/kg) | | | see Table C-1 | EDA 1003 | | | IR _{max} | Maximum Ingestion rate of soil (kg/day)* | | | 4.83E-05 | EPA, 1993 | | | ** | Mean Ingestion rate of soil (kg/day)* | | | 4.83E-05 | EPA, 1993 | | | AF
AUF | Chemical Bioavailability in soil (unitless) Area Use Factor | | | 1
1 | EPA, 1997
EPA, 1997 | | | AUF | Area Use Factor - Refined | | | 5.75E-03 | Sample et al., 1997 | | | BW | Minimum Body weight (kg) | | | 1.40E+01 | Davis and Schmidly, | 2009 | | Bw _{mean} | Mean Body weight (kg) | | | 1.70E+01 | Davis and Schmidly, | | | mean | Refined | | Chemical | | | Sc | | Intake | Intake | | 4.4.000 | | | E 00E 00 | | 4 755 07 | 9 20F 40 | | 4,4-DDD
4,4'-DDE | | | 5.08E-02
2.81E-03 | | 1.75E-07
9.69E-09 | 8.30E-10
4.59E-11 | | 4,4'-DDT | | | 9.27E-03 | | 3.20E-08 | 4.59E-11
1.51E-10 | | Aroclor-1254 | | | 7.73E-01 | | 2.67E-06 | 1.31E-10
1.26E-08 | | Barium | | | 3.30E+02 | | 1.14E-03 | 5.40E-06 | | Chromium | | | 1.78E+01 | | 6.12E-05 | 2.90E-07 | | Copper | | | 4.01E+01 | | 1.38E-04 | 6.55E-07 | | Zinc | | | 8.15E+02 | | 2.81E-03 | 1.33E-05 | | TOTAL PAHs | | | 8.61E+00 | | 2.97E-05 | 1.41E-07 | | | | | | | | | | FOOD INGESTION | | | | | | | | | | | | | | | | INTAKE = ((Cm * IR | * Dfm * AUF)/(BW) + (Cb * IR * DFb * AUF) / (BW)) | | | | | | | Doromotor | Definition | | | \/alua | Deference | | | Parameter
Intake | Definition Intake of chemical (mg/kg-day) | | | Value calculated | Reference | | | Cm | Mammal concentration (mg/kg) | | | see Table C-15 | | | | Ch | Bird concentration (mg/kg) | | | see Table C-15 | | | | IR | Maximum Ingestion rate of of food (kg/day)* | | | 2.41E-03 | EPA, 1993 | | | IR _{max} | Mean Ingestion rate of of food (kg/day)* | | | 2.41E-03 | EPA, 1993 | | | Dfm | Dietary fraction of small mammals (unitless) | | | 7.50E-01 | EPA, 1993 | | | Dfb | Dietary fraction of siral manimals (unitless) | | | 2.50E-01 | EPA, 1993 | | | AUF | Area Use Factor | | | 1 | EPA, 1997 | | | AUF | Area Use Factor - Refined | | | 5.75E-03 | Sample et al., 1997 | | | BW | Minimum Body weight (kg) | | | 1.40E+01 | EPA, 1993 | | | Bw _{mean} | Mean Body weight (kg) | | | 1.70E+01 | Davis and Schmidly, | 2009 | | | | | | | | | | | | | | | | | | Chamiaal | Mammal | Died | | | Intoko | Refined | | Chemical | Mammal | Bird | | | Intake | Intake | | 4,4-DDD | 1.63E-05 | 3.35E-05 | | | 3.54E-09 | 9.94E-12 | | 4,4'-DDE | 8.99E-07 | 1.85E-06 | | | 1.96E-10 | 5.50E-13 | | 4,4'-DDT | 2.97E-06 | 6.11E-06 | | | 6.46E-10 | 1.81E-12 | | Aroclor-1254 | 2.33E-04 | 4.61E-04 | | | 4.99E-08 | 1.42E-10 | | Barium | 4.53E-03 | 4.53E-03 | | | 7.79E-07 | 2.77E-09 | | Chromium | 5.80E-04 | 5.80E-04 | | | 9.98E-08 | 3.54E-10 | | Copper | 1.81E+01 | 1.81E+01 | | | 3.12E-03 | 1.11E-05 | | Zinc | 1.05E-04 | 1.02E-01 | | | 4.40E-06 | 6.43E-11 | | TOTAL PAHs | 1.02E-02 | 1.40E-02 | | | 1.92E-06 | 6.26E-09 | | TOTAL DITALE | | | | | | | | TOTAL INTAKE | | | | | | | | INTAKE = Soil Intake | + Food Intake | | | | | | | INTAKE = SOILINIAKE | e + Food Ilitake | Total | Refined | | Chemical | | | | | Intake | Intake | | | | | | | | | | 4,4-DDD | | | | | 1.79E-07 | 8.40E-10 | | 4,4'-DDE | | | | | 9.89E-09 | 4.65E-11 | | 4,4'-DDT | | | | | 3.26E-08 | 1.53E-10 | | Aroclor-1254 | | | | | 2.72E-06 | 1.28E-08 | | Barium | | | | | 1.14E-03 | 5.40E-06 | | Chromium | | | | | 6.13E-05 | 2.90E-07 | | Copper | | | | | 3.26E-03 | 1.17E-05 | | Zinc
TOTAL PAHs | | | | | 2.82E-03 | 1.33E-05 | | | | | | | 3.16E-05 | 1.47E-07 | Notes: ^{*} Expressed in dry weight. ## **TABLE C-7** INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN **Small Mammalian Omnivore (LEAST SHREW)** | | Siliali Mallillaliali Ol | IIIIIVOIC (LLAGI | OTTICEW) | | | |---------------------------------------|---|----------------------|----------------------------------|--------------------------|----------------------| | SOIL INGESTION | | | | | | | INTAKE = (Sc * IR * AF * AUF) / (BW) | | | | | | | Parameter | Definition | | Value | Reference | | | Intake | Intake of chemical (mg/kg-day) | | calculated |
 | | Sc
IR | Soil concentration (mg/kg) | | see Table C-1 | EDA 4000 | | | IR
IR _{max} | Maximum Ingestion rate of soil (kg/day)* Mean Ingestion rate of soil (kg/day)* | | 2.71E-07
2.71E-07 | EPA, 1993
EPA, 1993 | | | AF | Chemical Bioavailability in soil (unitless) | | 1 | EPA, 1997 | | | AUF | Area Use Factor | | 1 | EPA, 1997 | | | BW | Minimum Body weight (kg) | | 4.00E-03 | Davis and Schmidly, 2009 | | | Bw _{mean} | Mean Body weight (kg) | | 5.75E-03 | Davis and Schmidly, 2009 | | | | | | | | Deffered | | Chemical | | Sc | | Intake | Refined
Intake | | 4,4-DDD | | 5.08E-02 | | 3.44E-06 | 2.39E-06 | | 4,4'-DDE | | 2.81E-03 | | 1.90E-07 | 1.32E-07 | | 4,4'-DDT | | 9.27E-03 | | 6.28E-07 | 4.37E-07 | | Aroclor-1254 | | 7.73E-01 | | 5.24E-05 | 3.64E-05 | | Barium
Chromium | | 3.30E+02
1.78E+01 | | 2.24E-02
1.20E-03 | 1.56E-02
8.37E-04 | | Copper | | 4.01E+01 | | 2.72E-03 | 1.89E-03 | | Zinc | | 8.15E+02 | | 5.52E-02 | 3.84E-02 | | TOTAL PAHs | | 8.61E+00 | | 5.84E-04 | 4.06E-04 | | FOOD INGESTION | | | | | | | INTAKE = ((Ca * IR * DFa * AUF) / (BV | V) + ((Cp * IR * DFs *AUF)/(BW)) | | | | | | Parameter | Definition | | Value | Reference | | | Intake | Intake of chemical (mg/kg-day) | | calculated | | | | Ca
Cp | Arthropod concentration (mg/kg) Plant concentration (mg/kg) | | see Table C-15
see Table C-15 | | | | IR | Maximum Ingestion rate of food (kg/day)* | | 3.38E-06 | EPA, 1993 | | | IR _{max} | Mean Ingestion rate of of food (kg/day)* | | 3.38E-06 | EPA, 1993 | | | Dfa | Dietary fraction of arthropods (unitless) | | 9.00E-01 | EPA, 1993 | | | Dfs | Dietary fraction of plants, seeds and other veg | etation (unitless) | 1.00E-01 | EPA, 1993 | | | AUF | Area Use Factor | | 1 | EPA, 1997 | | | BW | Minimum Body weight (kg) | | 4.00E-03 | Davis and Schmidly, 2009 | | | BW _{mean} | Mean Body weight (kg) | | 5.75E-03 | Davis and Schmidly, 2009 | | | Chemical | Arthropod | Plant | | Intake | Refined
Intake | | 4,4-DDD | 6.40E-02 | 4.76E-04 | | 4.87E-05 | 3.39E-05 | | 4,4'-DDE | 3.54E-03 | 2.63E-05 | | 2.69E-06 | 1.87E-06 | | 4,4'-DDT | 1.17E-02 | 8.69E-05 | | 8.89E-06 | 6.18E-06 | | Aroclor-1254 | 8.73E-01 | 7.73E-03 | | 6.65E-04 | 4.63E-04 | | Barium | 7.27E+01 | 4.96E+01 | | 5.95E-02 | 4.14E-02 | | Copper | 1.78E-01
1.60E+00 | 1.33E-01
1.60E+01 | | 1.46E-04
2.57E-03 | 1.02E-04
1.79E-03 | | Zinc | 4.57E+02 | 9.78E-10 | | 3.47E-01 | 2.42E-01 | | TOTAL PAHs | 6.03E-01 | 1.72E-01 | | 4.73E-04 | 3.29E-04 | | TOTAL INTAKE | | | | | | | INTAKE = Soil Intake + Food Intake | | | | | | | | | | | Total | Refined | | Chemical | | | | Intake | Intake | | 4,4-DDD | | | | 5.22E-05 | 3.63E-05 | | 4,4'-DDE | | | | 2.89E-06 | 2.01E-06 | | 4,4'-DDT | | | | 9.52E-06 | 6.62E-06 | | Aroclor-1254 | | | | 7.17E-04
8.10E-02 | 4.99E-04 | | Barium
Chromium | | | | 8.19E-02
1.35E-03 | 5.69E-02
9.38E-04 | | Copper | | | | 5.29E-03 | 3.68E-03 | | Zinc | | | | 4.02E-01 | 2.80E-01 | | TOTAL PAHs | | | | 1.06E-03 | 7.35E-04 | | | | | | | | Soil ingestion was assumed to be 8% of dietary intake. * Expressed in dry weight. ## TABLE C-8 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN Avian Omnivore/Herbivore (AMERICAN ROBIN) | Name Definition Value Reference Name | SOIL INGESTION | | | | | | | |--|----------------------------------|----------------------------|-----------------------------|--------------------|-------|-----------|----------| | Parameter Definition Defi | SOIL INGESTION | | | | | | | | Intake of Intake of Chemical (ImpRight State) Solic Solic Concentration (ImpRight State) Solic Solic Concentration (ImpRight State) Solic Concentration (ImpRight State) Solic Concentration (ImpRight State) Solic Solic Concentration (ImpRight State) Solic Solic Concentration (ImpRight State) Solic Solic Solic State Solic So | INTAKE = (Sc * IR * AF * AUF) / | (BW) | | | | | | | Intake of Intake of Chemical (ImpRight State) Solic Solic Concentration (ImpRight State) Solic Solic Concentration (ImpRight State) Solic Concentration (ImpRight State) Solic Concentration (ImpRight State) Solic Solic Concentration (ImpRight State) Solic Solic Concentration (ImpRight State) Solic Solic Solic State Solic So | Parameter | Definition | | | Value | Reference | | | Maximum registron rate of soil (grighty)" 2.55E-06 EPA, 1903 | Intake | | ng/kg-day) | | | | | | Mean Ingestion rate of soil (ligology)* 2.526-06 EPA, 1993 | Sc | , | 0 0/ | | | | | | February Chemical Biovariability in soil (unitless) 1 | IR | | | | | | | | FPA 1997 PAPE PAP | | | | | | | | | Marie | | | ility in soil (unitless) | | | , | | | Mean Body weight (kg) | BW | | ht (ka) | | · | | | | A-DOD | Bw _{mean} | | | | | | | | A-DDD | | | | | | | | | A-DDD | | | | | | | 5 | | A4-DDE | Chemical | | | Sc | | Intake | | | A4-DDE | | | | | | | | | | 4,4-DDD | | | | | | | | | | | | | | | | | Sartum | | | | | | | | | | Barium | | | | | | | | | Chromium | | | | | | | | 1.06E+03 | Copper | | | | | | | | | Zinc | | | | | | | | Name | TOTAL PAHs | | | 1.06E+04 | | 4.23E-01 | 3.18E-01 | | Name | FOOD INGESTION | | | | | | | | Parameter | I OOD INGESTION | | | | | | | | Intake Intake of chemical (mg/kg-day) calculated be Earthworm concentration (mg/kg) see Table C-15 be b | INTAKE = ((Ce * IR * Dfe * AUF)/ | (BW) + (Ca * IR * DFa * AU | F) / (BW) + ((Cp * IR * DFs | s *AUF)/(BW)) | | | | | Intake Intake of chemical (mg/kg-day) calculated be Earthworm concentration (mg/kg) see Table C-15 be b | | | | | | | | | Earthworn concentration (mg/kg) See Table C-15 | Parameter | | | | | Reference | | | Arthropod concentration (mg/kg) see Table C-15 c Plant (mg/kg/g) 4.85E-05 c Plant 1993 (mg/kg/ | Intake | | | | | | | | Plant concentration (mg/kg) | Ce | | | | | | | | Maximum Ingestion rate of of food (kg/day)* 4.85E-05 EPA, 1993 | Ca | • | | | | | | | Remark Mean Ingestion rate of of food (kg/day)* | Cp
IR | | | | | EDA 4000 | | | Dietary fraction of earthworms (unitless) | | | | | | | | | Dietary fraction of arthropods (unitless) 4.60E-01 EPA, 1993 Mis Dietary fraction of plants, seeds and other vegetation (unitless) 8.00E-02 EPA, 1993 EPA, 1993 Minimum Body weight (kg) 6.30E-02 EPA, 1993 Minimum Body weight (kg) 6.30E-02 EPA, 1993 Minimum Body weight (kg) 6.30E-02 EPA, 1993 Minimum Body weight (kg) 8.40E-02 EPA, 1993 Minimum Body weight (kg) 8.40E-02 EPA, 1993 Minimum Body weight (kg) 8.40E-02 EPA, 1993 Minimum Body weight (kg) Refined intake int | | | | | | | | | Dietary fraction of plants, seeds and other vegetation (unitless) 8.00E-02 EPA, 1993 EPA, 1997 | Dfe
Dfo | • | , , | | | | | | Area Use Factor 1 EPA, 1997 South So | Dfs | • | | atation (unitless) | | | | | Minimum Body weight (kg) 6.30E-02 EPA, 1993 Semen Mean Body weight (kg) 8.40E-02 EPA, 1993 Semen Mean Body weight (kg) 8.40E-02 EPA, 1993 Semen Mean Body weight (kg) 8.40E-02 EPA, 1993 Semen Earthworm Arthropod Plant Refined Intake | AUF | | arno, occus anu omer vege | Janui (uniless) | | | | | Mean Body weight (kg) 8.40E-02 EPA, 1993 | BW | | ht (kg) | | | | | | A-DDD | Bw _{mean} | | | | | | | | Chemical Earthworm Arthropod Plant Intake Intake Intake Chemical Chemical Earthworm Arthropod Plant Intake Int | | | | | | | | | A-DDD | | | | | | | Refined | | A-DDE | Chemical | Earthworm | Arthropod | Plant | | Intake | Intake | | A-DDE | 4 4-DDD | 6.40F-02 | 6.40F-02 | 4 76F-04 | | 4 54F-05 | 3.40F-05 | | A-DDT | 4,4'-DDE | | | | | | | | Acceptable Section S | 4,4'-DDT | | | | | | 6.21E-06 | | Sarium 7.27E+01 7.27E+01 4.96E+01 5.45E-02 4.09E-02 Chromium 1.78E-01 1.78E-01 1.33E-01 1.34E-04 1.00E-04 Chopper 1.60E+00 1.60E+00 1.60E+01 1.69E+01 Chromium 2.12E-03 1.59E-03 Chromium 2.12E-03 2.42E-01 Chromium 3.23E-01 2.42E-01 COTAL PAHS 6.03E-01 6.03E-01 1.72E-01 4.38E-04 COTAL INTAKE Soil Intake + Food Intake Chemical | Aroclor-1254 | | | | | | 4.64E-04 | | Chromium | Barium | | | | | | 4.09E-02 | | Copper | Chromium | 1.78E-01 | 1.78E-01 | 1.33E-01 | | 1.34E-04 | | | TOTAL PAHS 6.03E-01
6.03E-01 1.72E-01 4.38E-04 3.28E-04 TOTAL INTAKE NTAKE = Soil Intake + Food Intake Total Refined Intake A-DDD A-SHE-05 3.40E-05 2.81E-06 2.11E-06 A-ODDT A-COLOR SECOLOR SECO | Copper | | | | | | 1.59E-03 | | NTAKE = Soil Intake + Food Intake Total Refined Intake I | Zinc | | | | | | | | Total Refined Intake Food Intake Refined Intake In | TOTAL PAHs | 6.03E-01 | 6.03E-01 | 1.72E-01 | | 4.38E-04 | 3.28E-04 | | Total Refined Intake I | TOTAL INTAKE | | | | | | | | Total Refined Intake I | INTAKE = Soil Intake + Food Inta | ke | | | | | | | Chemical Intake Intake Chemical 4.54E-05 3.40E-05 4.4-DDD 2.81E-06 2.11E-06 4.4-DDT 8.69E-06 6.52E-06 Arcolor-1254 6.50E-04 4.87E-04 Barium 7.79E-02 5.84E-02 Chromium 1.21E-03 9.06E-04 Copper 3.66E-01 2.74E-01 | | | | | | | | | Chemical Intake Intake Chemical 4.54E-05 3.40E-05 4.4-DDD 2.81E-06 2.11E-06 4.4-DDT 8.69E-06 6.52E-06 Arcolor-1254 6.50E-04 4.87E-04 Barium 7.79E-02 5.84E-02 Chromium 1.21E-03 9.06E-04 Copper 3.66E-01 2.74E-01 | | | | | | Total | Refined | | 4'-DDE 2.81E-06 2.11E-06 4'-DDT 8.69E-06 6.52E-06 4roclor-1254 6.50E-04 4.87E-04 3arium 7.79E-02 5.84E-02 Chromium 1.21E-03 9.06E-04 2opper 4.21E-03 3.16E-03 2inc 3.66E-01 2.74E-01 | Chemical | | | | | | | | 4'-DDE 2.81E-06 2.11E-06 4'-DDT 8.69E-06 6.52E-06 4roclor-1254 6.50E-04 4.87E-04 3arium 7.79E-02 5.84E-02 Chromium 1.21E-03 9.06E-04 2opper 4.21E-03 3.16E-03 2inc 3.66E-01 2.74E-01 | 4.4-DDD | | | | | 4.54F-05 | 3.40F-05 | | 4'-DDT 8.69E-06 6.52E-06 4rcolor-1254 6.50E-04 4.87E-04 5arium 7.79E-02 5.84E-02 Chromium 1.21E-03 9.06E-04 Copper 4.21E-03 3.16E-03 2inc 3.66E-01 2.74E-01 | 4,4'-DDE | | | | | | | | Arcolor-1254 6.50E-04 4.87E-04 Barium 7.79E-02 5.84E-02 Chromium 1.21E-03 9.06E-04 Copper 4.21E-03 3.66E-01 2.74E-01 | 4,4'-DDT | | | | | | | | Barium 7.79E-02 5.84E-02 Chromium 1.21E-03 9.06E-04 Copper 4.21E-03 3.16E-03 Zinc 3.66E-01 2.74E-01 | Aroclor-1254 | | | | | | 4.87E-04 | | Chromium 1.21E-03 9.06E-04 Copper 4.21E-03 3.16E-03 Zinc 3.66E-01 2.74E-01 | Barium | | | | | | 5.84E-02 | | 2.74E-01 3.66E-01 2.74E-01 | Chromium | | | | | | 9.06E-04 | | | Copper | | | | | 4.21E-03 | | | ************************************** | Zinc | | | | | | | | | TOTAL PAHs | | | | | 4.24E-01 | 3.18E-01 | | | | | | | | | | Notes: * Expressed in dry weight. ## **TABLE C-9** INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN Large Avian Carnivore (RED-TAILED HAWK) | SOIL INGESTION | | | | | | | |--|---|--|----------------------|----------------------|--|--| | COLLINGEOTION | | | | | | | | | | | | | | | | INTAKE = (Sc * IR * | AF * AUF) / (BW) | | | | | | | , | , , , | | | | | | | Parameter | Definition | | | Value | Reference | | | Intake | Intake of chemical (mg/kg-day) | | | calculated | | | | Sc
IR | Soil concentration (mg/kg) | /do. ()* | | see Table C-2 | EDA 1003 | | | IR _{max} | Maximum Ingestion rate of soil (kg | | | 8.97E-06
8.97E-06 | EPA, 1993 | | | AF | Mean Ingestion rate of soil (kg/day | | | | EPA, 1993 | | | AUF | Chemical Bioavailability in soil (unit
Area Use Factor | iess) | | 1
1 | EPA, 1997
EPA, 1997 | | | AUF | Area Use Factor - Refined | | | 1.88E-02 | EPA, 1997 | | | BW | Minimum Body weight (kg) | | | 9.57E-01 | EPA, 1993 | | | Bw _{mean} | Mean Body weight (kg) | | | 1.70E+00 | Davis and Schmidly | . 2009 | | moun | 3 7 (3) | | | | , | | | | | | | | | | | | | | | | | Refined | | Chemical | | | Sc | | Intake | Intake | | 4.4.000 | | | 2 705 04 | | 2.525.00 | 2 60E 11 | | 4,4-DDD
4,4'-DDE | | | 2.70E-04
7.52E-03 | | 2.53E-09
7.05E-08 | 2.68E-11
7.46E-10 | | 4,4'-DDT | | | 1.03E-02 | | 9.65E-08 | 1.02E-09 | | Aroclor-1254 | | | 7.64E-01 | | 7.16E-06 | 7.58E-08 | | Barium | | | 5.84E+02 | | 5.48E-03 | 5.80E-05 | | Chromium | | | 2.68E+01 | | 2.52E-04 | 2.66E-06 | | Copper | | | 5.22E+01 | | 4.89E-04 | 5.18E-06 | | Zinc | | | 1.06E+03 | | 9.95E-03 | 1.05E-04 | | TOTAL PAHs | | | 8.61E+00 | | 8.07E-05 | 8.54E-07 | | | | | | | | | | FOOD INGESTION | | | | | | | | | | | | | | | | INTAKE = ((Cm * IR | * Dfm * AUF)/(BW) + (Cb * IR * DFb * AUF) / (BW) |) | | | | | | Parameter | Definition | | | \/alua | Reference | | | Intake | Definition Intake of chemical (mg/kg-day) | | | Value calculated | Reference | | | Cm | Mammal concentration (mg/kg) | | | see Table C-15 | | | | Ch | Bird concentration (mg/kg) | | | see Table C-15 | | | | IR | Maximum Ingestion rate of of food (kg/day)* | | | 4.48E-04 | EPA, 1993 | | | IR _{max} | Mean Ingestion rate of of food (kg/day)* | | | 4.48E-04 | EPA, 1993 | | | Dfm | Dietary fraction of small mammals (unitless) | | | 7.85E-01 | EPA, 1993 | | | Dfb | Dietary fraction of birds (unitless) | | | 2.15E-01 | EPA, 1993
EPA, 1993 | | | AUF | Area Use Factor | | | 1 | EPA, 1997 | | | AUF | | | | | | | | UCASTI | Area Use Factor - Refined | | | 1.88E-02 | | | | BW | Area Use Factor - Refined
Minimum Body weight (kg) | | | 1.88E-02
9.57E-01 | EPA, 1997
EPA, 1993 | | | BW | Area Use Factor - Refined
Minimum Body weight (kg)
Mean Body weight (kg) | | | | EPA, 1997 | , 2009 | | | Minimum Body weight (kg) | | | 9.57E-01 | EPA, 1997
EPA, 1993 | , 2009 | | BW | Minimum Body weight (kg) | | | 9.57E-01 | EPA, 1997
EPA, 1993 | | | BW
Bw _{mean} | Minimum Body weight (kg)
Mean Body weight (kg) | Dired | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly | Refined | | BW | Minimum Body weight (kg) | Bird | | 9.57E-01 | EPA, 1997
EPA, 1993 | | | BW
Bw _{mean}
Chemical | Minimum Body weight (kg) Mean Body weight (kg) Mammal | | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly | Refined
Intake | | BW
Bw _{mean} | Minimum Body weight (kg)
Mean Body weight (kg) | 3.35E-05 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly | Refined
Intake | | BW
Bw _{mean}
Chemical | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 | | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly.
Intake
9.34E-09 | Refined Intake 9.89E-11 5.47E-12 | | BW
Bw _{mean}
Chemical
4,4-DDD
4,4'-DDE | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 | 3.35E-05
1.85E-06 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly
Intake
9.34E-09
5.17E-10 | Refined Intake 9.89E-11 5.47E-12 | | BW
BW _{mean}
Chemical
4,4-DDD
4,4'-DDE
4,4'-DDT | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 | 3.35E-05
1.85E-06
6.11E-06 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly.
Intake
9.34E-09
5.17E-10
1.71E-09 | 9.89E-11
5.47E-12
1.80E-11 | | BW BW _{mean} Chemical 4,4-DDD 4,4'-DDE 4,4'-DDT Aroclor-1254 Barium Chromium | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly
Intake
9.34E-09
5.17E-10
1.71E-09
1.32E-07 | Refined
Intake
9.89E-11
5.47E-12
1.80E-11
1.40E-09 | | BW BW _{mean} Chemical 4,4-DDD 4,4'-DDE 4,4'-DDT Aroclor-1254 Barium Chromium Copper | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly
Intake
9.34E-09
5.17E-10
1.71E-09
1.32E-07
2.12E-06
2.71E-07
8.49E-03 | 9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05 | | BW BW _{mean} Chemical 4,4-DDD 4,4'-DDE 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly.
Intake
9.34E-09
5.17E-10
1.71E-09
1.32E-07
2.12E-06
2.71E-07
8.49E-03
1.03E-05 | 9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05
1.09E-07 | | BW BW _{mean} Chemical 4,4-DDD 4,4'-DDE 4,4'-DDT Aroclor-1254 Barium Chromium Copper | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly
Intake
9.34E-09
5.17E-10
1.71E-09
1.32E-07
2.12E-06
2.71E-07
8.49E-03 | 9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05 | | BW BW _{mean} Chemical 4,4-DDD 4,4-DDE 4,4-DDT Arcolor-1254 Barium Chromium Copper Zinc TOTAL PAHs | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly.
Intake
9.34E-09
5.17E-10
1.71E-09
1.32E-07
2.12E-06
2.71E-07
8.49E-03
1.03E-05 |
9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05
1.09E-07 | | BW BW _{mean} Chemical 4,4-DDD 4,4'-DDE 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly.
Intake
9.34E-09
5.17E-10
1.71E-09
1.32E-07
2.12E-06
2.71E-07
8.49E-03
1.03E-05 | 9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05
1.09E-07 | | BW BW _{mean} Chemical 4,4-DDD 4,4'-DDE 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL PAHs | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 1.02E-02 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly.
Intake
9.34E-09
5.17E-10
1.71E-09
1.32E-07
2.12E-06
2.71E-07
8.49E-03
1.03E-05 | 9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05
1.09E-07 | | BW BW _{mean} Chemical 4,4-DDD 4,4-DDE 4,4-DDT Arcolor-1254 Barium Chromium Copper Zinc TOTAL PAHs | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 1.02E-02 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly.
Intake
9.34E-09
5.17E-10
1.71E-09
1.32E-07
2.12E-06
2.71E-07
8.49E-03
1.03E-05 | 9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05
1.09E-07 | | BW BW _{mean} Chemical 4,4-DDD 4,4'-DDE 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL PAHs | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 1.02E-02 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly.
Intake
9.34E-09
5.17E-10
1.71E-09
1.32E-07
2.12E-06
2.71E-07
8.49E-03
1.03E-05 | 9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05
1.09E-07 | | BW BW _{mean} Chemical 4,4-DDD 4,4'-DDE 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL PAHs | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 1.02E-02 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly.
Intake
9.34E-09
5.17E-10
1.71E-09
1.32E-07
2.12E-06
2.71E-07
8.49E-03
1.03E-05 | 9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05
1.09E-07 | | BW BW _{mean} Chemical 4,4-DDD 4,4'-DDE 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL PAHs | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 1.02E-02 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly
Intake
9.34E-09
5.17E-10
1.71E-09
1.32E-07
2.12E-06
2.71E-07
8.49E-03
1.03E-05
5.17E-06 | 9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05
1.09E-07
5.47E-08 | | BW BWmean Chemical 4,4-DDD 4,4-DDE 4,4-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL PAHs TOTAL INTAKE INTAKE = Soil Intake | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 1.02E-02 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly.
Intake 9.34E-09 5.17E-10 1.71E-09 1.32E-07 2.12E-06 2.71E-07 8.49E-03 1.03E-05 5.17E-06 | 9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05
1.09E-07
5.47E-08 | | BW BW _{mean} Chemical 4,4-DDD 4,4'-DDE 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL PAHs TOTAL INTAKE INTAKE = Soil Intake | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 1.02E-02 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997
EPA, 1993
Davis and Schmidly.
Intake 9.34E-09 5.17E-10 1.71E-09 1.32E-07 2.12E-06 2.71E-07 8.49E-03 1.03E-05 5.17E-06 | 9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05
1.09E-07
5.47E-08 | | BW BWmean Chemical 4,4-DDD 4,4-DDE 4,4-DDT Arcolor-1254 Barium Chromium Copper Zinc TOTAL PAHS TOTAL INTAKE INTAKE = Soil Intake Chemical 4,4-DDD 4,4'-DDE | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 1.02E-02 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997 EPA, 1993 Davis and Schmidly. Intake 9.34E-09 5.17E-10 1.71E-09 1.32E-07 2.12E-06 2.71E-07 8.49E-03 1.03E-05 5.17E-06 | 9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05
1.09E-07
5.47E-08 | | BW BW _{mean} Chemical 4,4-DDD 4,4'-DDE 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL PAHs TOTAL INTAKE INTAKE = Soil Intake | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 1.02E-02 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997 EPA, 1993 Davis and Schmidly Intake 9.34E-09 5.17E-10 1.71E-09 1.32E-07 2.12E-06 2.71E-07 8.49E-03 1.03E-05 5.17E-06 Total Intake 1.19E-08 | 9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05
1.09E-07
5.47E-08 | | BW BWmean Chemical 4,4-DDD 4,4'-DDE 4,4'-DDT Arcolor-1254 Barium Chromium Copper Zinc TOTAL PAHS TOTAL INTAKE INTAKE = Soil Intake Chemical 4,4-DDD 4,4'-DDE | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 1.02E-02 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997 EPA, 1993 Davis and Schmidly Intake 9.34E-09 5.17E-10 1.71E-09 1.32E-07 2.12E-06 2.71E-07 8.49E-03 1.03E-05 5.17E-06 Total Intake 1.19E-08 7.10E-08 | 9.89E-11
5.47E-12
1.80E-11
1.40E-09
2.24E-08
2.87E-09
8.99E-05
1.09E-07
5.47E-08
Refined Intake | | BW BWmean Chemical 4,4-DDD 4,4-DDE 4,4-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL PAHs TOTAL INTAKE INTAKE = Soil Intake Chemical 4,4-DDD 4,4-DDD 4,4-DDE 4,4-DDT | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 1.02E-02 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997 EPA, 1993 Davis and Schmidly Intake 9.34E-09 5.17E-10 1.71E-09 1.32E-07 2.12E-06 2.71E-07 8.49E-03 1.03E-05 5.17E-06 Total Intake 1.19E-08 7.10E-08 9.82E-08 | Refined Intake 9.89E-11 5.47E-12 1.80E-11 1.40E-09 2.24E-08 2.87E-09 8.99E-05 1.09E-07 5.47E-08 Refined Intake 1.26E-10 7.51E-10 1.04E-09 | | BW BW _{mean} Chemical 4,4-DDD 4,4'-DDE 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL INTAKE INTAKE = Soil Intake Chemical 4,4-DDD 4,4'-DDT Aroclor-1254 Barium Chromium Chromium | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 1.02E-02 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997 EPA, 1993 Davis and Schmidly Intake 9.34E-09 5.17E-10 1.71E-09 1.32E-07 2.12E-06 2.71E-07 8.49E-03 1.03E-05 5.17E-06 Total Intake 1.19E-08 7.10E-08 9.82E-08 7.29E-06 5.48E-03 2.52E-04 | Refined Intake 9.89E-11 5.47E-12 1.80E-11 1.40E-09 2.24E-08 2.87E-09 8.99E-05 1.09E-07 5.47E-08 Refined Intake 1.26E-10 7.51E-10 1.04E-09 7.72E-08 5.80E-05 2.67E-06 | | BW BWmean Chemical 4,4-DDD 4,4-DDE 4,4-DDT Arcolor-1254 Barium Chromium Copper Zinc TOTAL INTAKE INTAKE = Soil Intake Chemical 4,4-DDD 4,4'-DDE 4,4'-DDE 4,4'-DDT Arcolor-1254 Barium Chromium Copper | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 1.02E-02 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997 EPA, 1993 Davis and Schmidly Intake 9.34E-09 5.17E-10 1.71E-09 1.32E-07 2.12E-06 2.71E-07 8.49E-03 1.03E-05 5.17E-06 Total Intake 1.19E-08 7.10E-08 9.82E-08 7.29E-06 5.48E-03 2.52E-04 8.98E-03 | Refined Intake 9.89E-11 5.47E-12 1.80E-11 1.40E-09 2.24E-08 2.87E-09 8.99E-05 1.09E-07 5.47E-08 Refined Intake 1.26E-10 7.51E-10 1.04E-09 7.72E-08 5.80E-05 2.67E-06 9.50E-05 | | BW BW _{mean} Chemical 4,4-DDD 4,4'-DDE 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL INTAKE INTAKE = Soil Intake Chemical 4,4-DDD 4,4'-DDT Aroclor-1254 Barium Chromium Chromium | Minimum Body weight (kg) Mean Body weight (kg) Mammal 1.63E-05 8.99E-07 2.97E-06 2.33E-04 4.53E-03 5.80E-04 1.81E+01 1.05E-04 1.02E-02 | 3.35E-05
1.85E-06
6.11E-06
4.61E-04
4.53E-03
5.80E-04
1.81E+01
1.02E-01 | | 9.57E-01 | EPA, 1997 EPA, 1993 Davis and Schmidly Intake 9.34E-09 5.17E-10 1.71E-09 1.32E-07 2.12E-06 2.71E-07 8.49E-03 1.03E-05 5.17E-06 Total Intake 1.19E-08 7.10E-08 9.82E-08 7.29E-06 5.48E-03 2.52E-04 | Refined Intake 9.89E-11 5.47E-12 1.80E-11 1.40E-09 2.24E-08 2.87E-09 8.99E-05 1.09E-07
5.47E-08 Refined Intake 1.26E-10 7.51E-10 1.04E-09 7.72E-08 5.80E-05 2.67E-06 | Notes: * Expressed in dry weight. # TABLE C-10 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SOIL SOUTH OF MARLIN Small Mammalian Herbivore (DEER MOUSE) | Ecological Haza | rd Quotient = Intake/TRV | | |-----------------|----------------------------------|---------------| | Parameter | Definition | Default | | Intake
TRV | Intake of COPEC (mg/kg-day) | see Intake | | IKV | Toxicity Reference Value (mg/kg) | see Table C-3 | | Chemical | Intake | Refined
Intake | TRV
(deer mouse) | EHQ | Refined
EHQ | |--------------|----------|-------------------|---------------------|----------|----------------| | | | | (acci messe) | | | | 4,4-DDD | 3.41E-05 | 2.50E-05 | 1.47E-01 | 2.32E-04 | 1.70E-04 | | 4,4'-DDE | 1.89E-06 | 1.38E-06 | 1.47E-01 | 1.28E-05 | 9.41E-06 | | 4,4'-DDT | 6.22E-06 | 4.56E-06 | 1.47E-01 | 4.23E-05 | 3.10E-05 | | Aroclor-1254 | 4.71E-04 | 3.50E-04 | 1.55E-01 | 3.04E-03 | 2.26E-03 | | Barium | 2.59E-01 | 1.86E-01 | 5.18E+01 | 5.00E-03 | 3.60E-03 | | Chromium | 6.87E-04 | 1.57E-03 | 2.40E+00 | 2.86E-04 | 6.55E-04 | | Copper | 7.28E-02 | 4.91E-02 | 5.60E+00 | 1.30E-02 | 8.76E-03 | | Zinc | 2.28E-01 | 1.98E-01 | 7.54E+01 | 3.02E-03 | 2.62E-03 | | TOTAL PAHs | 1.08E-03 | 1.24E-03 | | | | | | | | | | | | | | | | | | # TABLE C-11 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SOIL SOUTH OF MARLIN Large Mammalian Carnivore (COYOTE) | Parameter Definition Default Intake Intake of COPEC (mg/kg-day) see Intake TRV Toxicity Reference Value (mg/kg) see Table C Chemical Intake Intake Coyote 4,4-DDD 1.79E-07 8.40E-10 1.47E-01 | | | |--|----------|----------------| | Chemical Intake Intake Coyote | C-3 | | | 4,4-DDD 1.79E-07 8.40E-10 1.47E-01 | EHQ | Refined
EHQ | | | 1.22E-06 | 5.71E-09 | | 4,4'-DDE 9.89E-09 4.65E-11 1.47E-01 | 6.73E-08 | 3.16E-10 | | 4,4'-DDT 3.26E-08 1.53E-10 1.47E-01 | 2.22E-07 | 1.04E-09 | | Aroclor-1254 2.72E-06 1.28E-08 1.55E-01 | 1.75E-05 | 8.24E-08 | | Barium 1.14E-03 5.40E-06 4.10E-01 | 2.78E-03 | 1.32E-05 | | Chromium 6.13E-05 2.90E-07 2.40E+00 | 2.56E-05 | 1.21E-07 | | Copper 3.26E-03 1.17E-05 5.60E+00 | 5.82E-04 | 2.10E-06 | | Zinc 2.82E-03 1.33E-05 7.54E+01 | 3.74E-05 | 1.77E-07 | | TOTAL PAHs 3.16E-05 1.47E-07 | | | | | | | # TABLE C-12 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SOIL SOUTH OF MARLIN Small Mammalian Omnivore (LEAST SHREW) | Ecological Hazard | Quotient = Intake/TRV | | | | | | |----------------------------|---|----------|-------------------|--------------------|--|----------------| | Parameter
Intake
TRV | Definition Intake of COPEC (mg/kg-day) Toxicity Reference Value (mg/kg) | | | | Default
see Intake
see Table C-3 | | | Chemical | | Intake | Refined
Intake | TRV
Least Shrew | EHQ | Refined
EHQ | | 4,4-DDD | | 5.22E-05 | 3.63E-05 | 1.47E-01 | 3.55E-04 | 2.47E-04 | | 4,4'-DDE | | 2.89E-06 | 2.01E-06 | 1.47E-01 | 1.96E-05 | 1.37E-05 | | 4,4'-DDT | | 9.52E-06 | 6.62E-06 | 1.47E-01 | 6.47E-05 | 4.50E-05 | | Aroclor-1254 | | 7.17E-04 | 4.99E-04 | 1.55E-01 | 4.63E-03 | 3.22E-03 | | Barium | | 8.19E-02 | 5.69E-02 | 5.18E+01 | 1.58E-03 | 1.10E-03 | | Chromium | | 1.35E-03 | 9.38E-04 | 2.40E+00 | 5.62E-04 | 3.91E-04 | | Copper | | 5.29E-03 | 3.68E-03 | 5.60E+00 | 9.45E-04 | 6.57E-04 | | Zinc | | 4.02E-01 | 2.80E-01 | 7.54E+01 | 5.34E-03 | 3.71E-03 | | TOTAL PAHs | | 1.06E-03 | 7.35E-04 | | | | | | | | | | | | # TABLE C-13 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SOIL SOUTH OF MARLIN Avian Herbivore/Omnivore (AMERICAN ROBIN) | Ecological Hazar | rd Quotient = Intake/TRV | | | | | | |------------------|----------------------------------|----------|-------------------|-----------------------|---------------|----------------| | Parameter | Definition | | | | Default | | | Intake | Intake of COPEC (mg/kg-day) | | | | see Intake | | | TRV | Toxicity Reference Value (mg/kg) | | | | see Table C-3 | | | Chemical | | Intake | Refined
Intake | TRV
American Robin | EHQ | Refined
EHQ | | 4,4-DDD | | 4.54E-05 | 3.40E-05 | 2.27E-01 | 2.00E-04 | 1.50E-04 | | Chemical | Intake | Refined
Intake | TRV
American Robin | EHQ | Refined
EHQ | |--------------|----------|-------------------|-----------------------|----------|----------------| | | | | | | | | 4,4-DDD | 4.54E-05 | 3.40E-05 | 2.27E-01 | 2.00E-04 | 1.50E-04 | | 4,4'-DDE | 2.81E-06 | 2.11E-06 | 2.27E-01 | 1.24E-05 | 9.28E-06 | | 4,4'-DDT | 8.69E-06 | 6.52E-06 | 2.27E-01 | 3.83E-05 | 2.87E-05 | | Aroclor-1254 | 6.50E-04 | 4.87E-04 | 1.80E-01 | 3.61E-03 | 2.71E-03 | | Barium | 7.79E-02 | 5.84E-02 | 1.91E+01 | 4.08E-03 | 3.06E-03 | | Chromium | 1.21E-03 | 9.06E-04 | 2.66E+00 | 4.54E-04 | 3.40E-04 | | Copper | 4.21E-03 | 3.16E-03 | 4.05E+00 | 1.04E-03 | 7.80E-04 | | Zinc | 3.66E-01 | 2.74E-01 | 6.61E+01 | 5.53E-03 | 4.15E-03 | | TOTAL PAHs | 4.24E-01 | 3.18E-01 | 0.00E+00 | | | | | | | | | | | | | | | | | ### TABLE C-14 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SOIL SOUTH OF MARLIN Large Avian Carnivore (RED-TAILED HAWK) | Ecological Hazard | d Quotient = Intake/TRV | | | | | | |----------------------|---|----------------------|----------------------|----------------------------------|-----------------------|----------------| | Parameter
Intake | Definition
Intake of COPEC (mg/kg-day) | | | | Default
see Intake | | | TRV | Toxicity Reference Value (mg/kg |) | | | see Table C-3 | | | Chemical | | Intake | Refined
Intake | TRV
Red-Tailed Hawk | EHQ | Refined
EHQ | | 4,4-DDD | | 1.19E-08 | 1.26E-10 | 2.27E-01 | 5.23E-08 | | | 4,4'-DDE
4,4'-DDT | | 7.10E-08
9.82E-08 | 7.51E-10
1.04E-09 | 2.27E-01
2.27E-01
2.27E-01 | | 3.31E-09 | | Aroclor-1254 | | 7.29E-06 | 7.72E-08 | 1.80E-01 | 4.05E-05 | 4.29E-07 | 5.80E-05 2.67E-06 9.50E-05 1.05E-04 9.09E-07 3.15E+01 2.66E+00 4.05E+00 6.61E+01 1.74E-04 1.84E-06 9.47E-05 1.00E-06 2.22E-03 2.35E-05 1.51E-04 1.60E-06 5.48E-03 2.52E-04 8.98E-03 9.96E-03 8.59E-05 Barium Copper Chromium Zinc TOTAL PAHs ## TABLE C-15 CONCENTRATION OF CHEMICAL IN FOOD ITEM (mg/kg) Cfood = Csoil x BCF (or BAF) Cfood = Csoil = BCF BAF = Chemical Concentration in food (mg/kg dry) Chemical Concentration in soil (mg/kg dry) Bioconcentration Factor (unitless) Bioaccumulation Factor (unitless) | Compound | Csoil | Soil to Earthworm | Earthworm | Reference | Soil to Arthropod | Arthropod | Reference Soil to P | ant Plant/Fruit/See | d Reference | Plant to Wildlife | Plant to Deer Mouse | Reference | Soil to Wildlife | Soil to Deer Mouse | Reference | TOTAL DEER MOUSE | Plant to Bird | Plant to Bird | Reference | Soil to Bird | Soil to Bird | Reference | TOTAL BIRD | |--------------|----------|-------------------|---------------|--------------|-------------------|---------------|---------------------|---------------------|--------------|-------------------|---------------------|------------|------------------|--------------------|---------------|------------------|---------------|---------------|------------|--------------|---------------|-------------|---------------| | | (mg/kg) | BCF | Concentration | | BCF | Concentration | BAF | Concentration | 1 | BCF | Concentration | | BCF | Concentration | | CONCENTRATION | BCF | Concentration | | BCF | Concentration | 1 | CONCENTRATION | 4,4-DDD | 5.08E-02 | 1.26E+00 | 6.40E-02 | EPA, 1999 | 1.26E+00 | 6.40E-02 | EPA, 1999 9.37E- | 3 4.76E-04 | EPA, 1999 | 2.72E-02 | 1.29E-05 | EPA, 1999 | 6.52E-05 | 3.31E-06 | EPA, 1999 | 1.63E-05 | 1.59E-02 | 7.57E-06 | EPA, 1999 | 5.10E-04 | 2.59E-05 | EPA, 1999 | 3.35E-05 | | 4,4'-DDE | 2.81E-03 | 1.26E+00 | 3.54E-03 | EPA, 1999 | 1.26E+00 | 3.54E-03 | EPA, 1999 9.37E- | 3 2.63E-05 | EPA, 1999 | 2.72E-02 | 7.16E-07 | EPA, 1999 | 6.52E-05 | 1.83E-07 | EPA, 1999 | 8.99E-07 | 1.59E-02 | 4.19E-07 | EPA, 1999 | 5.10E-04 | 1.43E-06 | EPA, 1999 | 1.85E-06 | | 4,4'-DDT | 9.27E-03 | 1.26E+00 | 1.17E-02 | EPA, 1999 | 1.26E+00 | 1.17E-02 | EPA, 1999 9.37E- | 3 8.69E-05 | EPA, 1999 | 2.72E-02 | 2.36E-06 | EPA, 1999 | 6.52E-05 | 6.04E-07 | EPA, 1999 | 2.97E-06 | 1.59E-02 | 1.38E-06 | EPA, 1999 | 5.10E-04 | 4.73E-06 | EPA, 1999 | 6.11E-06 | | Aroclor-1254 | 7.73E-01 | 1.13E+00 | 8.73E-01 | EPA, 1999 | 1.13E+00 | 8.73E-01 | EPA, 1999 1.00E- | 2 7.73E-03 | EPA, 1999 | 2.43E-02 | 1.88E-04 | EPA, 1999 | 5.83E-05 | 4.51E-05 | EPA, 1999 | 2.33E-04 | 1.42E-02 | 1.10E-04 | EPA, 1999 | 4.55E-04 | 3.52E-04 | EPA, 1999 | 4.61E-04 | | Barium | 3.30E+02 | 2.20E-01 | 7.27E+01 | Sample, 1998 | 2.20E-01 | 7.27E+01 | Sample, 199 1.50E- | 1 4.96E+01 | Bechtel, 199 | 8 8.99E-05 | 4.46E-03 | EPA, 1999 | 2.16E-07 | 7.14E-05 | Sample, 1998a | 4.53E-03 | 8.99E-05 | 4.46E-03 | EPA, 1999 | 2.16E-07 | 7.14E-05 | Sample, 199 | 98 4.53E-03 | | Chromium | 1.78E+01 | 1.00E-02 | 1.78E-01 | Sample, 1998 | 1.00E-02 | 1.78E-01 | Sample, 199 7.50E- | 3 1.33E-01 | Bechtel, 199 | 8 3.30E-03 | 4.39E-04 | EPA, 1999 | 7.91E-06 | 1.40E-04 | Sample, 1998a | 5.80E-04 | 3.30E-03 | 4.39E-04 | EPA, 1999 | 7.91E-06 | 1.40E-04 | Sample, 199 | 98 5.80E-04 | | Copper | 4.01E+01 | 4.00E-02 | 1.60E+00 | EPA, 1999 | 4.00E-02 | 1.60E+00 | EPA, 1999 4.00E- | 1.60E+01 | EPA, 1999 | 1.00E+00 | 1.60E+01 | ** | 5.25E-02 | 2.10E+00 | Sample, 1998a | 1.81E+01 | 1.00E+00 | 1.60E+01 | ** | 5.25E-02 | 2.10E+00 | Sample, 199 | 98 1.81E+01 | | Zinc | 8.15E+02 | 5.60E-01 | 4.57E+02 | EPA, 1999 | 5.60E-01 | 4.57E+02 | EPA, 1999 1.20E- | 2 9.78E-10 | EPA, 1999 | 5.39E-05 | 5.27E-14 | EPA, 1999 | 1.29E-07 | 1.05E-04 | EPA, 1999 | 1.05E-04 | 3.89E-03 | 3.81E-12 | EPA, 1999 | 1.25E-04 | 1.02E-01 | EPA, 1999 | 1.02E-01 | | TOTAL PAHs | 8.61E+00 | 7.00E-02 | 6.03E-01 | EPA, 1999* | 7.00E-02 |
6.03E-01 | EPA, 1999* 2.00E- | 2 1.72E-01 | EPA, 1999* | 5.31E-02 | 9.15E-03 | EPA, 1999* | 1.27E-04 | 1.09E-03 | EPA, 1999* | 1.02E-02 | 3.11E-02 | 5.36E-03 | EPA, 1999* | 9.98E-04 | 8.60E-03 | EPA, 1999* | 1.40E-02 | Notes: For vanadium and molybdenum, the BCF values for chromium were used since they are in transitional elements with similar properties. * For BAFs and BCFs for LPAHs and HPAHs, the most conservative value for the individual PAHs was used to estimated food concentrations. **If no BAF or BCF was available in the literature, a default value of 1.0 was used. # TABLE D-1 EXPOSURE POINT CONCENTATION (mg/kg) SOIL NORTH OF MARLIN AVE.* | Parameter | Exposure Point Concentration | Statistic Used | |--------------|------------------------------|----------------------| | 4,4'-DDT | 8.18E-02 | 97.5% KM (Chebyshev) | | Aroclor-1254 | < 4.30E-03 | median | | Barium | 2.08E+02 | 95% Chebyshev | | Chromium | 2.27E+01 | 95% Student's-t | | Copper | 4.48E+01 | 95% Chebyshev | | Zinc | 1.18E+03 | 97.5% Chebyshev | ### Notes: NC - Not a COPEC because it was not measured in greater than five percent of all North Area soils. ^{*} Soil data includes soil collected from 0 to 2 feet below ground surface. # TABLE D-2 EXPOSURE POINT CONCENTATION (mg/kg) SURFACE SOIL NORTH OF MARLIN AVE.* | Parameter | Exposure Point
Concentration | Statistic Used | |--------------|---------------------------------|-----------------| | 4,4'-DDT | < 5.00E-04 | median | | Aroclor-1254 | < 4.29E-03 | median | | Barium | 2.64E+02 | 95% Chebyshev | | Chromium | 4.86E+01 | 95% Chebyshev | | Copper | 7.00E+01 | 95% Chebyshev | | Zinc | 2.34E+03 | 97.5% Chebyshev | ### Notes: $^{^{\}ast}$ Surface soil data includes soil collected from 0 to 0.5 feet below ground surface. NS - Not sampled in surface soil. ## **TABLE D-3 TOXICITY REFERENCE VALUES** | | Invertebrate | | | Small Mammalian
Herbivore (Deer | | | Large Mammalian | | | Small Mammalian | | | Avian
Herbivore/Omnivore | | | Large Avian Carnivore | | | |--------------|--------------|------------|---|------------------------------------|--------------|--|--------------------|--------------|---|------------------------|--------------|---|-----------------------------|--------------|--|-----------------------|--------------|--| | | (Earthworm) | | | Mouse) (mg/kgBW- | | | Carnivore (Coyote) | | | Omnivore (Least Shrew) | | | (American Robin) | | | (Red-tailed Hawk) | | | | Parameter | (mg/kg) | Ref. | Comments | day) | Ref. | Comments | (mg/kgBW-day) | Ref. | Comments | | | | | | | | Highest bounded
NOAEL for growth and | | | Highest bounded | | | Highest bounded
NOAEL for growth
and reproduction
lower than the | | | Highest bounded | | | Highest bounded NOAEL for growth and | | | | | Acute median LC50 in common cricket (dose 4.3 with | | | reproduction lower than
the lowest bounded
LOAEL for | | | NOAEL for growth and reproduction lower than the lowest bounded | | | lowest bounded
LOAEL for
reproduction, | | | reproduction lower
than the lowest
bounded LOAEL for | | | reproduction lower
than the lowest
bounded LOAEL for | | 4,4'-DDT | 4.30E-02 | EPA, 2007a | uncertainty factor of 0.01) | 1.47E-01 | EPA, 2007a | reproduction, growth,
and survival | 1.47E-01 | EPA, 2007a | LOAEL for reproduction,
growth, and survival | 1.47E-01 | EPA, 2007a | growth, and
survival | 2.27E-01 | EPA, 2007a | reproduction, growth,
and survival | 2.27E-01 | EPA, 2007a | reproduction, growth,
and survival | | | | | Acute median LC50 in earthworms (dose 251 with uncertainty | | | Chronic LOAEL for reproduction in mouse with an uncertainty | | | Chronic LOAEL for reproduction in mouse with an uncertainty | | | Chronic LOAEL for
reproduction in
mouse with an
uncertainty factor | | | | | | | | Aroclor-1254 | 2.51E+00 | EPA, 1999 | factor of 0.01) | 1.55E-01 | Sample, 1996 | factor of 0.1 | 1.55E-01 | Sample, 1996 | factor of 0.1 | 1.55E-01 | Sample, 1996 | of 0.1 | 1.80E-01 | Sample, 1996 | | 1.80E-01 | Sample, 1996 | | | Destrue | 3,30E+02 | FDA 2005a | Geometric mean of
the EC20 values for
three test species
under three separate
test conditions of pH | 5.18E+01 | EPA. 2005a | Geometric mean of
NOAEL values for
reproduction and | 5.18E+01 | EDA 2005~ | Geometric mean of
NOAEL values for
reproduction and growth | 5.18E+01 | EPA, 2005g | Geometric mean
of NOAEL values
for reproduction | 1.91E+01 | EPA. 1999 | | 3.15E+01 | EPA. 1999 | | | Barium | 3.30E+02 | EPA, 20050 | Maximum | 5.16E+U1 | EPA, 2005g | growth | 5.16E+U1 | EPA, 2005g | reproduction and growth | 5.10E+U1 | EPA, 2005g | and growth | 1.91E+01 | EPA, 1999 | | 3.13E+U1 | EPA, 1999 | | | Chromium | 5.70E+01 | EPA, 2005c | acceptable toxicant
concentration
(MATC) for
reproductive effects
in earthworm | 2.40E+00 | EPA, 2005c | Geometric mean of
NOAEL values for
reproduction and
growth | 2.40E+00 | EPA, 2005c | Geometric mean of
NOAEL values for
reproduction and growth | 2.40E+00 | EPA, 2005c | Geometric mean
of NOAEL values
for reproduction
and growth | 2.66E+00 | EPA, 2005c | Geometric mean of the
NOAEL values for
reproduction and
growth | 2.66E+00 | EPA, 2005c | Geometric mean of the
NOAEL values for
reproduction and
growth | | | | | Geometric mean of
the MATC and EC10
values for six test
species under | | | Highest bounded
NOAEL for growth and
reproduction lower than
the lowest bounded
LOAEL for
reproduction, growth, | | | Highest bounded
NOAEL for growth and
reproduction lower than
the lowest bounded
LOAEL for reproduction, | | | Highest bounded NOAEL for growth and reproduction lower than the lowest bounded LOAEL for reproduction, growth, and | | | Highest bounded
NOAEL for growth and
reproduction lower
than the lowest
bounded LOAEL for
reproduction, growth, | | | Highest bounded
NOAEL for growth and
reproduction lower
than the lowest
bounded LOAEL for
reproduction, growth, | | Copper | 8.00E+01 | EPA, 2007c | different test species | 5.60E+00 | EPA, 2007c | and survival | 5.60E+00 | EPA, 2007c | growth, and survival | 5.60E+00 | EPA, 2007c | survival | 4.05E+00 | EPA, 2007c | and survival | 4.05E+00 | EPA, 2007c | and survival | | | | | Geometric mean of
the MATC and EC10
values for three test
species under | | | Geometric mean of
NOAEL values for
reproduction and | | | Geometric mean of NOAEL values for | | | Geometric mean
of NOAEL values
for reproduction | | | Geometric mean of NOAEL values within the reproductive and | | | Geometric mean of
NOAEL values within
the reproductive and | | Zinc | 1.20E+02 | EPA, 2007e | different test species | 7.54E+01 | EPA, 2007e | growth | 7.54E+01 | EPA, 2007e | reproduction and growth | 7.54E+01 | EPA, 2007e | and growth | 6.61E+01 | EPA, 2007e | growth effect groups | 6.61E+01 | EPA, 2007e | growth effect groups | Notes: EPA, 2007a -- DDT EPA, 2007c -- Copper EPA, 2007e -- Zinc EPA, 2005c -- Chromium EPA, 2005g -- Barium # TABLE D-4 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SOIL NORTH OF MARLIN Invertebrate (EARTHWORM) | Ecological Hazar | d Quotient = Sc/TRV | | | |--|----------------------------------|----------------------------------|----------------------------------| | Parameter | Definition | | Default | | Sc | Soil Concentration (mg/kg) | | see below | | TRV | Toxicity Reference Value (mg/kg) | | see Table D-3 | | | Exposure Point Concentra | ition* TRV | Maximum | | Chemical | (Sc) | (earthworm) | EHQ⁺ | | | (Sc)
3.95E-01 | (earthworm)
4.30E-02 | EHQ⁺
9.19E+00 | | 4,4'-DDT | . , | , | | | Chemical
4,4'-DDT
Aroclor-1254
Barium | 3.95E-01 | 4.30E-02 | 9.19E+00 | | 4,4'-DDT
Aroclor-1254
Barium | 3.95E-01
6.35E+00 | 4.30E-02
2.51E+00 | 9.19E+00
2.53E+00 | | 4,4'-DDT
Aroclor-1254 | 3.95E-01
6.35E+00
4.76E+02 | 4.30E-02
2.51E+00
3.30E+02 | 9.19E+00
2.53E+00
1.44E+00 | Notes: ^{*}EPC for sedentary receptor is maximum measured concentration. ^{*}Shading indicates HQ>1 # TABLE D-5 INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN Small Mammalian Herbivore (DEER MOUSE) | SOIL INGESTION | I | | | | | |--------------------|--|----------------------|----------------|----------------------|----------------------| | INTAKE = (Sc * IF | R * AF * AUF) / (BW) | | | | | | Parameter | Definition | | Value | Reference | | | Intake | Intake of chemical (mg/kg-day) | | calculated | | | | Sc | Soil concentration (mg/kg) | | See Table D-1 | | | | IR | Maximum Ingestion rate of soil (kg/day)* | | 1.50E-06 | EPA, 1993 | | | IR _{max} | Mean Ingestion rate of soil (kg/day)* | | 1.50E-06 | EPA, 1993 | | | AF | Chemical Bioavailability in soil (unitless) | | 1 | EPA, 1997 | | | AUF | Area Use Factor | | 1 | EPA, 1997 | | | BW | Minimum Body weight (kg) | | 1.50E+02 | Davis and Schmidly, | | | Bw _{mean} | Mean Body weight (kg) | | 2.35E-02 | Davis and Schmidly, | 2009 | | Chemical | | Sc | | Intake | Refined
Intake | | | | | | | | | 4,4'-DDT | | 8.18E-02 | | 8.18E-10 | 5.22E-06 | | Aroclor-1254 | | 4.30E-03 | | 4.30E-11 | 2.74E-07 | | Barium | |
2.08E+02 | | 2.08E-06 | 1.33E-02 | | Chromium
Copper | | 2.27E+01
4.48E+01 | | 2.27E-07
4.48E-07 | 1.45E-03
2.86E-03 | | Zinc | | 1.18E+03 | | 1.18E-05 | 7.54E-02 | | | | 1.102+03 | | 1.102-03 | 7.54L-02 | | FOOD INGESTIO | | | | | | | INTAKE = ((Ca * I | R * DFa * AUF) / (BW) + ((Cp * IR * DFs *AUF)/(B | W)) | | | | | Parameter | Definition | | Value | Reference | | | Intake | Intake of chemical (mg/kg-day) | | calculated | | | | Ca | Arthropod concentration (mg/kg) | | see Table D-15 | | | | Ср | Plant concentration (mg/kg) | | see Table D-15 | | | | IR | Maximum Ingestion rate of of food (kg/day)* | | 7.49E-05 | EPA, 1993 | | | IR _{max} | Mean Ingestion rate of of food (kg/day)* | | 7.49E-05 | EPA, 1993 | | | Dfa | Dietary fraction of arthropods (unitless) | | 1.00E-01 | Prof Judgment | | | Dfs | Dietary fraction of plants, seeds and other veg | getation (unitless) | 9.00E-01 | Prof Judgment | | | AUF
BW | Area Use Factor | | 1 505 00 | EPA, 1997 | 2000 | | | Minimum Body weight (kg) | | 1.50E-02 | Davis and Schmidly, | | | Bw _{mean} | Mean Body weight (kg) | | 2.35E-02 | Davis and Schmidly, | 2009 | | Chemical | Arthropod | Plant | | Intake | Refined
Intake | | | · | | | | | | 4,4'-DDT | 1.03E-01 | 7.66E-04 | | 5.49E-05 | 3.50E-05 | | Aroclor-1254 | 4.86E-03 | 4.30E-05 | | 2.62E-06 | 1.67E-06 | | Barium | 4.58E+01 | 3.13E+01 | | 1.63E-01 | 1.04E-01 | | Chromium | 2.27E-01 | 1.70E-01 | | 8.78E-04 | 5.61E-04 | | Copper | 1.79E+00 | 1.79E+01 | | 8.15E-02 | 5.20E-02 | | Zinc | 6.61E+02 | 1.42E-09 | | 3.30E-01 | 2.11E-01 | | TOTAL INTAKE | | | | | | | INTAKE = Soil Inta | ake + Food Intake | | | | | | Chemical | | | | Total
Intake | Refined
Intake | | 4.41.007 | | | | 5.405.05 | 4.005.05 | | 4,4'-DDT | | | | 5.49E-05 | 4.03E-05 | | Aroclor-1254 | | | | 2.62E-06 | 1.95E-06 | | Barium
Chromium | | | | 1.63E-01
8.79E-04 | 1.18E-01
2.01E-03 | | Copper | | | | 8.79E-04
8.15E-02 | 5.49E-02 | | Zinc | | | | 3.30E-01 | 2.86E-01 | | 0 | | | | 0.00L-01 | Z.00L-01 | Notes: ^{*} Expressed in dry weight. ### TABLE D-6 INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN Large Mammalian Carnivore (COYOTE) | SOIL INGESTION | | | | | | | |--|--|--|----------------------|---|---|--| | INTAKE = (Sc * IR * / | AF * AUF) / (BW) | | | | | | | Parameter | Definition | | | Value | Reference | | | Intake | Intake of chemical (mg/kg-day) | | | calculated | Kelefelice | | | Sc | Soil concentration (mg/kg) | | | see Table D-1 | | | | IR | Maximum Ingestion rate of soil (kg/day)* | | | 4.83E-05 | EPA, 1993 | | | | | | | 4.83E-05 | EPA, 1993 | | | IR _{max} | Mean Ingestion rate of soil (kg/day)* | | | | | | | AF | Chemical Bioavailability in soil (unitless) | | | 1 | EPA, 1997 | | | AUF | Area Use Factor | | | 1 | EPA, 1997 | | | AUF | Area Use Factor - Refined | | | 5.75E-03 | Sample et al., 1997 | 2000 | | BW | Minimum Body weight (kg) | | | 1.40E+01 | Davis and Schmidly, | | | Bw _{mean} | Mean Body weight (kg) | | | 1.70E+01 | Davis and Schmidly, | 2009 | | | | | | | | Refined | | Chemical | | | Sc | | Intake | Intake | | 4,4'-DDT | | | 8.18E-02 | | 2.82E-07 | 1.34E-09 | | 4,4 -001
Aroclor-1254 | | | 4.30E-02 | | 1.48E-08 | 7.02E-11 | | Barium | | | 2.08E+02 | | 7.19E-04 | 3.40E-06 | | Chromium | | | 2.00E+02
2.27E+01 | | 7.19E-04
7.83E-05 | 3.71E-07 | | Copper | | | 4.48E+01 | | 1.55E-04 | 7.32E-07 | | Zinc | | | 1.18E+03 | | 4.07E-03 | 1.93E-05 | | ZIIIC | | | 1.101-03 | | 4.07 L-03 | 1.932-03 | | FOOD INGESTION | | | | | | | | INTAKE = ((Cm * IR * | * Dfm * AUF)/(BW) + (Cb * IR * DFb * AUF) / (BW)) | | | | | | | | | | | | | | | Parameter | | | | Value | Reference | | | Parameter
Intake | Definition | | | Value calculated | Reference | | | Intake | Definition Intake of chemical (mg/kg-day) | | | | Reference | | | Intake
Cm | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) | | | calculated
see Table D-15 | Reference | | | Intake
Cm
Cb | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) | | | calculated
see Table D-15
see Table D-15 | | | | Intake
Cm
Cb
IR | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* | | | calculated
see Table D-15
see Table D-15
2.41E-03 | EPA, 1993 | | | Intake
Cm
Cb
IR
IR _{max} | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* | | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03 | EPA, 1993
EPA, 1993 | | | Intake
Cm
Cb
IR
IR _{max}
Dfm | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) | | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01 | EPA, 1993
EPA, 1993
EPA, 1993 | | | Intake
Cm
Cb
IR
IR _{max}
Dfm
Dfb | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) | | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01 | EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1993 | | | Intake
Cm
Cb
IR
IR _{max}
Dfm
Dfb
AUF | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor | | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01 | EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1997 | | | Intake
Cm
Cb
IR
IR _{max}
Dfm
Dfb
AUF
AUF | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined | | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03 | EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1997
Sample et al., 1997 | | | Intake
Cm
Cb
IR
IR _{max}
Dfm
Dfb
AUF
AUF
BW | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) | | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1997
Sample et al., 1997
EPA, 1993 | 2000 | | Intake
Cm
Cb
IR
IR _{max}
Dfm
Dfb
AUF
AUF | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined | | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03 | EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1997
Sample et al., 1997 | 2009 | | Intake
Cm
Cb
IR
IR _{max}
Dfm
Dfb
AUF
AUF
BW | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) | | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1997
Sample et al., 1997
EPA, 1993 | 2009
Refined | | Intake
Cm
Cb
IR
IR _{max}
Dfm
Dfb
AUF
AUF
BW | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds
(unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) | Bird | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1997
Sample et al., 1997
EPA, 1993 | | | Intake Cm Cb IR IR _{max} Dfm Dfb AUF BW BW _{mean} | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) | | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1997
Sample et al., 1997
EPA, 1993
Davis and Schmidly, | Refined
Intake | | Intake Cm Cb IR IR IR IR Max Dfm Dfb AUF AUF BW Bw Mean Chemical | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) Mammal | 5.39E-05 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, : | Refined
Intake | | Intake Cm Cb IR IR IR IR Max Dfm Dfb AUF AUF BW Bw Mean Chemical 4,4'-DDT Aroclor-1254 | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) Mammal 2.62E-05 1.30E-06 | 5.39E-05
2.57E-06 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, 1 | Refined Intake 2.70E-11 1.32E-12 | | Intake Cm Cb IR IR IR Max Dfm Dfb AUF AUF BW BWmean Chemical 4,4'-DDT Aroclor-1254 Barium | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) Mammal 2.62E-05 1.30E-06 2.86E-03 | 5.39E-05
2.57E-06
2.86E-03 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, 1 | Refined Intake 2.70E-11 1.32E-12 2.33E-09 | | Intake Cm Cb IR IR IR IR Max Dfm Dfb AUF BW Bwmean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) Mammal 2.62E-05 1.30E-06 2.86E-03 7.41E-04 | 5.39E-05
2.57E-06
2.86E-03
7.41E-04 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, 2 Intake 5.70E-09 2.78E-10 4.92E-07 1.28E-07 | Refined
Intake
2.70E-11
1.32E-12
2.33E-09
6.04E-10 | | Intake Cm Cb IR IR IR Max Dfm Dfb AUF AUF BW BWmean Chemical 4,4'-DDT Aroclor-1254 Barium | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) Mammal 2.62E-05 1.30E-06 2.86E-03 | 5.39E-05
2.57E-06
2.86E-03 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, 1 | Refined Intake 2.70E-11 1.32E-12 2.33E-09 | | Intake Cm Cb IR IR IR _{max} Dfm Dfb AUF BW Bw _{mean} Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) Mammal 2.62E-05 1.30E-06 2.86E-03 7.41E-04 2.03E+01 | 5.39E-05
2.57E-06
2.86E-03
7.41E-04
2.03E+01 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, 2 Intake 5.70E-09 2.78E-10 4.92E-07 1.28E-07 3.49E-03 | Refined Intake 2.70E-11 1.32E-12 2.33E-09 6.04E-10 1.65E-05 | | Intake Cm Cb IR IR IR IR Max Dfm Dfb AUF BW Bwmean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) Mammal 2.62E-05 1.30E-06 2.86E-03 7.41E-04 2.03E+01 1.52E-04 | 5.39E-05
2.57E-06
2.86E-03
7.41E-04
2.03E+01 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, 2 Intake 5.70E-09 2.78E-10 4.92E-07 1.28E-07 3.49E-03 | Refined Intake 2.70E-11 1.32E-12 2.33E-09 6.04E-10 1.65E-05 | | Intake Cm Cb IR IR IR IR IR Max Dfm Dfb AUF AUF BW Bw Bw Mean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL INTAKE | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) Mammal 2.62E-05 1.30E-06 2.86E-03 7.41E-04 2.03E+01 1.52E-04 | 5.39E-05
2.57E-06
2.86E-03
7.41E-04
2.03E+01 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, 2 Intake 5.70E-09 2.78E-10 4.92E-07 1.28E-07 3.49E-03 | Refined Intake 2.70E-11 1.32E-12 2.33E-09 6.04E-10 1.65E-05 | | Intake Cm Cb IR IR IR IR IR Max Dfm Dfb AUF AUF BW Bwmean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL INTAKE | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) Mammal 2.62E-05 1.30E-06 2.86E-03 7.41E-04 2.03E+01 1.52E-04 | 5.39E-05
2.57E-06
2.86E-03
7.41E-04
2.03E+01 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, 2 Intake 5.70E-09 2.78E-10 4.92E-07 1.28E-07 3.49E-03 | 2.70E-11
1.32E-12
2.33E-09
6.04E-10
1.65E-05 | | Intake Cm Cb IR IR IR IR IR Max Dfm Dfb AUF AUF BW BW Bwmean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL INTAKE INTAKE = Soil Intake | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) Mammal 2.62E-05 1.30E-06 2.86E-03 7.41E-04 2.03E+01 1.52E-04 | 5.39E-05
2.57E-06
2.86E-03
7.41E-04
2.03E+01 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, 3 Intake 5.70E-09 2.78E-10 4.92E-07 1.28E-07 3.49E-03 6.37E-06 | Refined Intake 2.70E-11 1.32E-12 2.33E-09 6.04E-10 1.65E-05 3.02E-08 Refined Intake | | Intake Cm Cb IR | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined
Minimum Body weight (kg) Mean Body weight (kg) Mammal 2.62E-05 1.30E-06 2.86E-03 7.41E-04 2.03E+01 1.52E-04 | 5.39E-05
2.57E-06
2.86E-03
7.41E-04
2.03E+01 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, 3 Intake 5.70E-09 2.78E-10 4.92E-07 1.28E-07 3.49E-03 6.37E-06 Total Intake 2.88E-07 | Refined Intake 2.70E-11 1.32E-12 2.33E-09 6.04E-10 1.65E-05 3.02E-08 Refined Intake | | Intake Cm Cb IR | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) Mammal 2.62E-05 1.30E-06 2.86E-03 7.41E-04 2.03E+01 1.52E-04 | 5.39E-05
2.57E-06
2.86E-03
7.41E-04
2.03E+01 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, 3 Intake 5.70E-09 2.78E-10 4.92E-07 1.28E-07 3.49E-03 6.37E-06 Total Intake 2.88E-07 1.51E-08 | Refined Intake 2.70E-11 1.32E-12 2.33E-09 6.04E-10 1.65E-05 3.02E-08 Refined Intake 1.36E-05 7.16E-11 | | Intake Cm Cb IR | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) Mammal 2.62E-05 1.30E-06 2.86E-03 7.41E-04 2.03E+01 1.52E-04 | 5.39E-05
2.57E-06
2.86E-03
7.41E-04
2.03E+01 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, 3 Intake 5.70E-09 2.78E-10 4.92E-07 1.28E-07 3.49E-03 6.37E-06 Total Intake 2.88E-07 1.51E-08 7.19E-04 | Refined Intake 2.70E-11 1.32E-12 2.33E-09 6.04E-10 1.65E-05 3.02E-08 Refined Intake 1.36E-05 7.16E-11 3.41E-06 | | Intake Cm Cb IR | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) Mammal 2.62E-05 1.30E-06 2.86E-03 7.41E-04 2.03E+01 1.52E-04 | 5.39E-05
2.57E-06
2.86E-03
7.41E-04
2.03E+01 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, 1 Intake 5.70E-09 2.78E-10 4.92E-07 1.28E-07 3.49E-03 6.37E-06 Total Intake 2.88E-07 1.51E-08 7.19E-04 7.84E-05 | Refined Intake 2.70E-11 1.32E-12 2.33E-09 6.04E-10 1.65E-05 3.02E-08 Refined Intake 1.36E-05 7.16E-11 3.41E-06 3.71E-07 | | Intake Cm Cb IR | Definition Intake of chemical (mg/kg-day) Mammal concentration (mg/kg) Bird concentration (mg/kg) Maximum Ingestion rate of of food (kg/day)* Mean Ingestion rate of of food (kg/day)* Dietary fraction of small mammals (unitless) Dietary fraction of birds (unitless) Area Use Factor Area Use Factor - Refined Minimum Body weight (kg) Mean Body weight (kg) Mammal 2.62E-05 1.30E-06 2.86E-03 7.41E-04 2.03E+01 1.52E-04 | 5.39E-05
2.57E-06
2.86E-03
7.41E-04
2.03E+01 | | calculated
see Table D-15
see Table D-15
2.41E-03
2.41E-03
7.50E-01
2.50E-01
1
5.75E-03
1.40E+01 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1997 Sample et al., 1997 EPA, 1993 Davis and Schmidly, 3 Intake 5.70E-09 2.78E-10 4.92E-07 1.28E-07 3.49E-03 6.37E-06 Total Intake 2.88E-07 1.51E-08 7.19E-04 | Refined Intake 2.70E-11 1.32E-12 2.33E-09 6.04E-10 1.65E-05 3.02E-08 | Notes: * Expressed in dry weight. ### **TABLE D-7** INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN **Small Mammalian Omnivore (LEAST SHREW)** | NTAKE = (8c * IR * AF * AUF) (8W) **Parameter*** Definition Value Reference | | | | | | | | |--|---------------------------------------|-----------------------------------|----------------------|------------|------------|--------------------------|-----------| | Parameter | SOIL INGESTION | | | | | | | | Parameter | INTAKE - (\$c * IR * AE * ALIE) / (R) | ۸/۱ | | | | | | | Intake Intake of Chemical (mg/kg-day) calculated SSC Sold concentration (mg/kg-day) see Table D-1 R. Maximum Ingestion rate of soil (kg/day)" 2.71E-07 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 2.77E-07 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 2.77E-07 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 2.77E-07 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 2.77E-07 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 2.77E-07 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 2.77E-07 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 2.77E-07 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 2.77E-07 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 2.77E-07 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 2.77E-07 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 2.77E-07 EPA, 1993 R. Maximum Ingestion rate of of soil (kg/day)" 3.38E-06 EPA, 1993 R. Maximum Ingestion rate of of soil (kg/day)" 3.38E-06 EPA, 1993 R. Maximum Ingestion rate of of soil (kg/day)" 3.38E-06 EPA, 1993 R. Maximum Ingestion rate of of soil (kg/day)" 3.38E-06 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 3.38E-06 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 3.38E-06 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 3.38E-06 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 3.38E-06 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 3.38E-06 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 3.38E-06 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 3.38E-06 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 3.38E-06 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 3.38E-06 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 3.38E-06 EPA, 1993 R. Maximum Ingestion rate of soil (kg/day)" 3.38E-06 EPA, 1993 R. Ma | INTAKE = (60 IK AI AOI)/(BI | ,,, | | | | | | | Second S | Parameter | | | | | Reference | | | Remain Maximum Ingestion ratio of soil (kg/day)" 2.716.07 EPA, 1933 FRA; Man Ingestion ratio of soil (kg/day)" 2.716.07 EPA, 1937 FPA, FP | Intake | | | | | | | | Rau | Sc | (0 0, | / | | | EDA 4000 | | | AFE Chemical Bionavalability in soil (unities) 1 EPA, 1997 | | | | | | | | | Area Use Factor Minimum Body weight (kg) Minimum Body weight (kg) Mean Body weight (kg) Sc Intake Chemical Sc Intake Refined | | | • • | | | | | | Manimum Body weight (kg) | | | nitiess) | | | | | | Mean Body weight (kg) S.75E-03 Davis and Schmidly, 2009 | | | | | | | | | Chemical Sc Intake Refined Inta | | | | | | | | | Sec Intake Inta | - Thean | Wiedir Body Weight (kg) | | | 0.702 00 | Davio and Commany, 2000 | | | Sec Intake Inta | | | | | | | | | 1.4-DDT | Chemical | | | Sc | | Intake | | | | Chemical | | | 00 | | mano | muno | | 2,88E-02 | 4,4'-DDT | | | | | | 3.86E-06 | | 2.27E-01 1.54E-03 1.07E-03 2.77E-05 2.27E-05 | Aroclor-1254 | | | | | | 2.03E-07 | | A 48E-01 A 48E-01 A 48E-02 A 48E-03 A 57E-02 A 57E-02 | Barium | | | | | | 9.82E-03 | | Total Part | | | | | | | | | NTAKE = ((Ca * IR * DFa * AUF) / (BW) + ((Cp * IR * DFs * AUF) / (BW)) | | | | | | | | | NTAKE = ((Ca * IR * DFa * AUF) / (BW) + ((Cp * IR *
DFs * AUF) / (BW)) Parameter Definition Value Reference Intake Intake of chemical (mg/kg-day) calculated 2a Arthropod concentration (mg/kg) 2b Plant concentration (mg/kg) R Arthropod concentration (mg/kg) Rese Table D-15 R Maximum Ingestion rate of food (kg/day)* 3.38E-06 EPA, 1993 Plant concentration reference of (kg/day)* 3.38E-06 EPA, 1993 Date Delatary fraction of atthropods (unitless) 9.00E-01 EPA, 1993 Dietary fraction of plants, seeds and other vegetation (unitless) 1.00E-01 EPA, 1993 Area Use Factor 1 EPA, 1993 Area Use Factor 1 EPA, 1993 Minimum Body weight (kg) 4.00E-03 Davis and Schmidly, 2009 Bw.meen Mean Body weight (kg) 5.75E-03 Davis and Schmidly, 2009 Bw.meen Mean Body weight (kg) 1.03E-01 7.66E-04 Arthropod Plant Intake Refined Intake Chemical Arthropod Plant Intake 1.37E-02 2.61E-02 Arcolor-1254 4.86E-03 4.30E-05 3.76E-06 2.57E-06 Bartim 4.58E+01 3.13E+01 3.78E-02 2.61E-02 Arcolor-1254 1.79E+00 1.79E+01 2.88E-03 2.00E-03 Eric 6.61E+02 1.42E-09 5.03E-01 3.50E-01 Total Refined Intake NTAKE = Soil Intake + Food Intake | Zinc | | | 1.18E+03 | | 8.00E-02 | 5.57E-02 | | Parameter Definition | FOOD INGESTION | | | | | | | | Parameter Definition | L | | | | | | | | Intake Intake of chemical (mg/kg-day) | INTAKE = ((Ca * IR * DFa * AUF) / (| (BW) + ((Cp * IR * DFs *AUF)/(BW) | ()) | | | | | | Ca | Parameter | Definition | | | Value | Reference | | | Plant concentration (mg/kg) | Intake | Intake of chemical (mg/kg-day) | | | calculated | | | | R Maximum Ingestion rate of of food (kg/day)* 3.38E-06 EPA, 1993 Plane Mean Ingestion rate of of food (kg/day)* 3.38E-06 EPA, 1993 Plane Dietary fraction of arthropods (unitless) 9.00E-01 EPA, 1993 Plane Dietary fraction of plants, seeds and other vegetation (unitless) 1.00E-01 EPA, 1993 Plane Dietary fraction of plants, seeds and other vegetation (unitless) 1.00E-01 EPA, 1993 Plane Area Use Factor 1 EPA, 1997 Plane Minimum Body weight (kg) 4.00E-03 Davis and Schmidly, 2009 Plane Mean Body weight (kg) 5.75E-03 Davis and Schmidly, 2009 Plane Demical Arthropod Plant Intake Int | Ca | | | | | | | | R_max | Ср | | | | | | | | Dietary fraction of arthropods (unitless) 9.00E-01 EPA, 1993 Dietary fraction of plants, seeds and other vegetation (unitless) 1.00E-01 EPA, 1993 LPA, 1993 LPA, 1997 Area Use Factor 1 EPA, 1997 Area Use Factor 1 EPA, 1997 LPA, 1 | IR | <u> </u> | | | | | | | Dietary fraction of plants, seeds and other vegetation (unitless) 1.00E-01 EPA, 1993 EPA, 1993 EPA, 1997 1993 | | - | | | | | | | Auf Area Úse Factor 1 EPÁ, 1997 3W Minimum Body weight (kg) 4.00E-03 Davis and Schmidly, 2009 3W _{mean} Mean Body weight (kg) 5.75E-03 Davis and Schmidly, 2009 Chemical Arthropod Plant Intake Refined Intake 4.4-DDT 1.03E-01 7.66E-04 7.84E-05 5.46E-05 3.70E-06 2.57E-06 2.67E-06 2.6 | Dfa | | , | | | | | | SW Minimum Body weight (kg) 4.00E-03 Davis and Schmidly, 2009 SW Mean Body weight (kg) 5.75E-03 Davis and Schmidly, 2009 SW ST-75E-03 Davis and Schmidly, 2009 SW ST-75E-03 Davis and Schmidly, 2009 SW SW SW SW SW SW SW S | Dfs | | and other vegetation | (unitless) | | | | | BW _{mean} Mean Body weight (kg) 5.75E-03 Davis and Schmidly, 2009 Chemical Arthropod Plant Intake Refined Intake 4,4*DDT 1.03E-01 7.66E-04 7.84E-05 5.46E-05 Arcolor-1254 4.86E-03 4.30E-05 3.70E-06 2.57E-06 Barium 4.58E+01 3.13E+01 3.75E-02 2.61E-02 Chormium 2.27E-01 1.70E-01 1.87E-04 1.30E-04 Zinc 1.79E+00 1.79E+01 2.88E-03 2.00E-02 Zinc 6.61E+02 1.42E-09 5.03E-01 3.50E-01 TOTAL INTAKE NTAKE = Soil Intake + Food Intake Total Intake Refined Intake Intake Intake Intake Intake Intake 1.72E-03 2.00E-02 3.59E-02 2.78E-03 3.59E-02 3. | | | | | | | | | Arthropod Plant Intake | | | | | | | | | Chemical Arthropod Plant Intake | BW _{mean} | Mean Body weight (kg) | | | 5.75E-03 | Davis and Schmidly, 2009 | | | Chemical Arthropod Plant Intake | | | | | | | | | 4,4'-DDT 1.03E-01 7.66E-04 7.84E-05 5.46E-05 4.00E-01254 4.86E-03 4.30E-05 3.70E-06 2.57E-06 3.70E-06 2.57E-06 3.70E-06 2.57E-06 3.70E-06 2.57E-06 3.70E-02 2.61E-02 1.70E-01 1.87E-04 1.30E-04 1.30E-04 1.30E-04 1.30E-04 1.30E-04 1.30E-04 1.30E-04 1.70E-01 1.70E-01 1.87E-04 1.30E-04 1.30E-04 1.70E-01 | a | | | B | | | | | Aroclor-1254 4.86E-03 4.30E-05 3.70E-06 2.57E-06 Barlum 4.58E+01 3.13E+01 3.75E-02 2.61E-02 2.70E-06 2.57E-06 3.70E-06 3.75E-02 2.61E-02 3.75E-02 2.61E-02 3.59E-02 3.75E-04 3.75E-04 1.30E-04 1.30E-04 1.70E-01 1.87E-04 1.30E-04 1.70E-01 2.88E-03 2.00E-03 2 | Chemical | Arthro | opod | Plant | | Intake | Intake | | Aroclor-1254 4.86E-03 4.30E-05 3.70E-06 2.57E-06 Barlum 4.58E+01 3.13E+01 3.75E-02 2.61E-02 2.70E-06 2.57E-06 3.70E-06 3.75E-02 2.61E-02 3.75E-02 2.61E-02 3.59E-02 3.75E-04 3.75E-04 1.30E-04 1.30E-04 1.70E-01 1.87E-04 1.30E-04 1.70E-01 2.88E-03 2.00E-03 2 | | | | | | | | | Sarium | 4,4'-DDT | | | | | | 5.46E-05 | | Chromium 2.27E-01 1.70E-01 1.87E-04 1.30E-04 1.30E-04 1.00E-04 1.70E-01 1.87E-04 1.30E-04 1.00E-03 1.70E-01 1.70E-01 1.70E-01 1.70E-03 1.00E-03 | | | | | | | 2.57E-06 | | 1.79E+00 | | | | | | | | | Total Refined Total Refined Intake I | | | | | | | | | TOTAL INTAKE NTAKE = Soil Intake + Food Intake Total Refined Chemical 8.40E-05 5.84E-05 4,4'-DDT 8.40E-05 3.99E-06 2.78E-06 Barium 5.16E-02 3.59E-02 Chromium 5.16E-02 3.59E-02 Chromium 5.91E-03 4.11E-03 Copper | | | | | | | | | Total Refined Intake Food Intake Property | Zinc | 6.611 | E+02 | 1.42E-09 | | 5.03E-01 | 3.50E-01 | | Total Refined 4,4'-DDT 4,4'-DDT 4,000-71254 5,39E-06 2,78E-06 2,78E-06 2,78E-06 2,78E-06 2,78E-06 3,99E-06 3,59E-02 3,59E-02 3,59E-02 1,72E-03 1,20E-03 2,0pper 5,91E-03 4,11E-03 | TOTAL INTAKE | | | | | | | | Total Refined 4,4'-DDT 4,4'-DDT 4,000-71254 5,39E-06 2,78E-06 2,78E-06 2,78E-06 2,78E-06 2,78E-06 3,99E-06 3,59E-02 3,59E-02 3,59E-02 1,72E-03 1,20E-03 2,0pper 5,91E-03 4,11E-03 | INTAKE = Soil Intake + Food Intake | | | | | | | | Chemical Intake Intake 4,4*-DDT 8.40E-05 5.84E-05 4,7*-Color-1254 3.99E-06 2.78E-06 Barium 5.16E-02 3.59E-02 Chromium 1.72E-03 1.20E-03 Copper 5.91E-03 4.11E-03 | | | | | | | | | Chemical Intake Intake 4,4*-DDT 8.40E-05 5.84E-05 4,7*-Color-1254 3.99E-06 2.78E-06 Barium 5.16E-02 3.59E-02 Chromium 1.72E-03 1.20E-03 Copper 5.91E-03 4.11E-03 | | | | | | Total | Refined | | Aroclor-1254 3.99E-06 2.78E-06 Barium 5.16E-02 3.59E-02 Chromium 1.72E-03 1.20E-03 Copper 5.91E-03 4.11E-03 | Chemical | | | | | | | | Aroclor-1254 3.99E-06 2.78E-06 Barium 5.16E-02 3.59E-02 Chromium 1.72E-03 1.20E-03 Copper 5.91E-03 4.11E-03 | 4.41.007 | | | | | 0.405.05 | E 0.45 05 | | Barium 5.16E-02 3.59E-02 Chromium 1.72E-03 1.20E-03 Copper 5.91E-03 4.11E-03 | * | | | | | | | | Chromium 1.72E-03 1.20E-03 Copper 5.91E-03 4.11E-03 | | | | | | | | | Copper 5.91E-03 4.11E-03 | | | | | | | | | | | | | | | | | | | Zinc | | | | | | 4.06E-01 | | | | | | | | | | Notes: * Expressed in dry weight. * Soil ingestion was assumed to be 8% of dietary intake. ### **TABLE D-8** INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN Avian Herbivore/Omnivore (AMERICAN ROBIN) | SOIL INGESTION | | | | | | | |---|---|---|--|---------------------------------------|--|---| | Ĭ | | | | | | | | INTAKE = (Sc * IR * AF * AUF | F) / (BW) | | | | | | | Parameter | Definition | | | Value | Reference | | | Intake | Intake of chemical (| mg/kg-day) | | calculated | rtororonoo | | | Sc | Soil concentration (| mg/kg) | | see Table D-2 | | | | IR | • | rate of soil (kg/day)* | | 2.52E-06 | EPA, 1993 | | | IR _{max} | Mean Ingestion rate | | | 2.52E-06 | EPA, 1993 | | | AF | Chemical Bioavailat | oility in soil (unitless) | | 1 | EPA, 1997 | | | AUF
BW | Area Use Factor | what (Ica) | | 1
6.30E-02 | EPA, 1997 | | | | Minimum Body weight | | | 6.30E-02
8.40E-02 | EPA, 1993 | | | Bw _{mean} | Mean Body weight (| kg) | | 0.40E-02 | EPA, 1993 | | | | | | | | | | | Chemical | | | Sc | | Intake | Refined
Intake | | | | | | | mano | muno | | 4,4'-DDT | | | 5.00E-04 | | 2.00E-08 | 1.50E-08 | | Aroclor-1254 | | | 4.29E-03 | | 1.72E-07 | 1.29E-07 | | Barium
Chromium | | | 2.64E+02 | | 1.06E-02 | 7.93E-03 | | Copper | | | 4.86E+01
7.00E+01 | | 1.94E-03
2.80E-03 | 1.46E-03
2.10E-03 | | Zinc | | | 2.34E+03 | | 9.37E-02 | 7.03E-02 | | EGGD HIGEOTICH | | | | | | | | FOOD INGESTION | | | | | | | | INTAKE = ((Ce * IR * Dfe * AU | JF)/(BW) + (Ca * IR * DFa * Al | UF) / (BW) + ((Cp * IR * DI | s *AUF)/(BW)) | | | | | Parameter | Definition | | | Value | Reference | | | Intake | Intake of chemical (| mg/kg-day) | | calculated | 110.0.0.0.0 | | | Ce | Earthworm concent | | | see Table D-15 | | | | Ca | Arthropod concentra | | | see Table D-15 | | | | Cp
IR | Plant concentration | (0 0) | | see Table D-15 | | | | | - | rate of of food (kg/day)* | | 4.85E-05 | EPA, 1993 | | | IR _{max} | Mean Ingestion rate | of of food (kg/day)* | | 4.85E-05 | EPA, 1993 | | | · · | | | | | | | | Dfe | | arthworms (unitless) | | 4.60E-01 | EPA, 1993 | | | Dfe
Dfa | Dietary fraction of a | rthropods (unitless) | -4-4: (:41) | 4.60E-01 | EPA, 1993 | | | Dfe
Dfa
Dfs | Dietary fraction of a
Dietary fraction of p | | etation (unitless) | 4.60E-01
8.00E-02 | EPA, 1993
EPA, 1993 | | | Dfe
Dfa
Dfs
AUF | Dietary fraction of a
Dietary fraction of p
Area Use Factor | rthropods (unitless)
lants, seeds and other veg | etation (unitless) |
4.60E-01
8.00E-02
1 | EPA, 1993
EPA, 1993
EPA, 1997 | | | Dfe
Dfa
Dfs
AUF
BW | Dietary fraction of a
Dietary fraction of p
Area Use Factor
Minimum Body weig | rthropods (unitless)
lants, seeds and other veg
ght (kg) | etation (unitless) | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993 | | | Dfe
Dfa
Dfs
AUF | Dietary fraction of a
Dietary fraction of p
Area Use Factor | rthropods (unitless)
lants, seeds and other veg
ght (kg) | etation (unitless) | 4.60E-01
8.00E-02
1 | EPA, 1993
EPA, 1993
EPA, 1997 | | | Dfe
Dfa
Dfs
AUF
BW | Dietary fraction of a
Dietary fraction of p
Area Use Factor
Minimum Body weig | rthropods (unitless)
lants, seeds and other veg
ght (kg) | etation (unitless) | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993 | Refined | | Dfe
Dfa
Dfs
AUF
BW | Dietary fraction of a
Dietary fraction of p
Area Use Factor
Minimum Body weig | rthropods (unitless)
lants, seeds and other veg
ght (kg) | etation (unitless) Plant | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993 | Refined
Intake | | Dfe Dfa Dfs AUF BW Bw _{mean} | Dietary fraction of a
Dietary fraction of p
Area Use Factor
Minimum Body weig
Mean Body weight (
Earthworm | rthropods (unitless) lants, seeds and other veg ght (kg) Arthropod | Plant | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993
EPA, 1993 | Intake | | Dfe
Dfa
Dfs
AUF
BW
Bw _{mean} | Dietary fraction of a
Dietary fraction of p
Area Use Factor
Minimum Body weig
Mean Body weight (| rthropods (unitless)
lants, seeds and other veg
ght (kg)
kg) | | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993
EPA, 1993 | | | Dfe Dfa Dfs AUF BW Bwmean Chemical | Dietary fraction of a Dietary fraction of p Area Use Factor Minimum Body weig Mean Body weight (Earthworm 1.03E-01 | rthropods (unitless) lants, seeds and other veg ght (kg) kg) Arthropod 1.03E-01 | Plant
7.66E-04 | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993
EPA, 1993
Intake | Intake 5.48E-05 | | Dfe Dfa Dfs AUF BW Bw _{mean} Chemical 4,4'-DDT Aroclor-1254 Barium Chromium | Dietary fraction of a Dietary fraction of p Area Use Factor Minimum Body weight (Mean Body weight (Earthworm 1.03E-01 4.86E-03 4.58E+01 2.27E-01 | rthropods (unitless) lants, seeds and other veg ght (kg) Arthropod 1.03E-01 4.86E-03 4.58E+01 2.27E-01 | Plant 7.66E-04 4.30E-05 3.13E+01 1.70E-01 | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993
EPA, 1993
Intake 7.30E-05 3.44E-06 3.44E-02 1.71E-04 | 5.48E-05
2.58E-06
2.58E-02
1.28E-04 | | Dfe Dfa Dfa Dfs AUF BW BW BWmean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper | Dietary fraction of a Dietary fraction of p Area Use Factor Minimum Body weig Mean Body weight (Earthworm 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 | rthropods (unitless) lants, seeds and other veg ght (kg) Arthropod 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 | Plant 7.66E-04 4.30E-05 3.13E+01 1.70E-01 1.79E+01 | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993
EPA, 1993
Intake 7.30E-05 3.44E-06 3.44E-02 1.71E-04 2.37E-03 | 5.48E-05
2.58E-06
2.58E-02
1.28E-04
1.78E-03 | | Dfe Dfa Dfs AUF BW Bw _{mean} Chemical 4,4'-DDT Aroclor-1254 Barium Chromium | Dietary fraction of a Dietary fraction of p Area Use Factor Minimum Body weight (Mean Body weight (Earthworm 1.03E-01 4.86E-03 4.58E+01 2.27E-01 | rthropods (unitless) lants, seeds and other veg ght (kg) Arthropod 1.03E-01 4.86E-03 4.58E+01 2.27E-01 | Plant 7.66E-04 4.30E-05 3.13E+01 1.70E-01 | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993
EPA, 1993
Intake 7.30E-05 3.44E-06 3.44E-02 1.71E-04 | 5.48E-05
2.58E-06
2.58E-02
1.28E-04 | | Dfe Dfa Dfa Dfs AUF BW BW BWmean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper | Dietary fraction of a Dietary fraction of p Area Use Factor Minimum Body weig Mean Body weight (Earthworm 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 | rthropods (unitless) lants, seeds and other veg ght (kg) Arthropod 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 | Plant 7.66E-04 4.30E-05 3.13E+01 1.70E-01 1.79E+01 | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993
EPA, 1993
Intake 7.30E-05 3.44E-06 3.44E-02 1.71E-04 2.37E-03 | 5.48E-05
2.58E-06
2.58E-02
1.28E-04
1.78E-03 | | Dfe Dfa Dfs AUF BW BWmean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL INTAKE | Dietary fraction of a Dietary fraction of p Area Use Factor Minimum Body weight (Earthworm 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 6.61E+02 | rthropods (unitless) lants, seeds and other veg ght (kg) Arthropod 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 | Plant 7.66E-04 4.30E-05 3.13E+01 1.70E-01 1.79E+01 | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993
EPA, 1993
Intake 7.30E-05 3.44E-06 3.44E-02 1.71E-04 2.37E-03 | 5.48E-05
2.58E-06
2.58E-02
1.28E-04
1.78E-03 | | Dfe Dfa Dfs AUF BW BW Bwmean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc | Dietary fraction of a Dietary fraction of p Area Use Factor Minimum Body weight (Earthworm 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 6.61E+02 | rthropods (unitless) lants, seeds and other veg ght (kg) Arthropod 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 | Plant 7.66E-04 4.30E-05 3.13E+01 1.70E-01 1.79E+01 | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993
EPA, 1993
Intake 7.30E-05 3.44E-06 3.44E-02 1.71E-04 2.37E-03 | 5.48E-05
2.58E-06
2.58E-02
1.28E-04
1.78E-03 | | Dfe Dfa Dfs AUF BW BWmean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL INTAKE | Dietary fraction of a Dietary fraction of p Area Use Factor Minimum Body weight (Earthworm 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 6.61E+02 | rthropods (unitless) lants, seeds and other veg ght (kg) Arthropod 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 | Plant 7.66E-04 4.30E-05 3.13E+01 1.70E-01 1.79E+01 | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1993
Intake 7.30E-05 3.44E-06 3.44E-02 1.71E-04 2.37E-03 4.68E-01 | 5.48E-05
2.58E-06
2.58E-02
1.28E-04
1.78E-03
3.51E-01 | | Dfe Dfa Dfs AUF BW BWmean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL INTAKE | Dietary fraction of a Dietary fraction of p Area Use Factor Minimum Body weight (Earthworm 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 6.61E+02 | rthropods (unitless) lants, seeds and other veg ght (kg) Arthropod 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 | Plant 7.66E-04 4.30E-05 3.13E+01 1.70E-01 1.79E+01 | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993
EPA, 1993
Intake 7.30E-05 3.44E-06 3.44E-02 1.71E-04 2.37E-03 | 5.48E-05
2.58E-06
2.58E-02
1.28E-04
1.78E-03
3.51E-01 | | Dfe Dfa Dfa Dfs AUF BW BW BWmean Chemical 4,4'-DDT Arcolor-1254 Barium Chromium Copper Zinc TOTAL INTAKE INTAKE = Soil Intake + Food I | Dietary fraction of a Dietary fraction of p Area Use Factor Minimum Body weight (Earthworm 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 6.61E+02 | rthropods (unitless) lants, seeds and other veg ght (kg) Arthropod 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 | Plant 7.66E-04 4.30E-05 3.13E+01 1.70E-01 1.79E+01 | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993
EPA, 1993
Intake 7.30E-05 3.44E-06 3.44E-02 1.71E-04 2.37E-03 4.68E-01 | 5.48E-05
2.58E-06
2.58E-02
1.28E-04
1.78E-03
3.51E-01 | | Dfe Dfa Dfa Dfs AUF BW BW BWmean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL INTAKE INTAKE = Soil Intake + Food I | Dietary fraction of a Dietary fraction of p Area Use Factor Minimum Body weight (Earthworm 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 6.61E+02 | rthropods (unitless) lants, seeds and other veg ght (kg) Arthropod 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 | Plant 7.66E-04 4.30E-05 3.13E+01 1.70E-01 1.79E+01 | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993
EPA, 1993
Intake 7.30E-05 3.44E-06 3.44E-02 1.71E-04 2.37E-03 4.68E-01 Total Intake 7.31E-05 | 1ntake 5.48E-05 2.58E-06 2.58E-02 1.28E-04 1.78E-03 3.51E-01 Refined Total Intake 5.48E-05 | | Dfe Dfa Dfa Dfs AUF BW BW BWmean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL INTAKE INTAKE = Soil Intake + Food I Chemical 4,4'-DDT Aroclor-1254 | Dietary fraction of a Dietary fraction of p Area Use Factor Minimum Body weight (Earthworm 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 6.61E+02 | rthropods (unitless) lants, seeds and other veg ght (kg) Arthropod 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 | Plant 7.66E-04 4.30E-05 3.13E+01 1.70E-01 1.79E+01 | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993 EPA, 1993 EPA, 1997 EPA, 1993 EPA, 1993 Intake 7.30E-05 3.44E-06 3.44E-02 1.71E-04 2.37E-03 4.68E-01 Total Intake 7.31E-05 3.62E-06 | Intake | | Dfe Dfa Dfa Dfs AUF BW BW BWmean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL INTAKE INTAKE = Soil Intake + Food I Chemical 4,4'-DDT | Dietary fraction of a Dietary fraction of p Area Use Factor Minimum Body weight (Earthworm 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 6.61E+02 | rthropods (unitless) lants, seeds and other veg ght (kg) Arthropod 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 | Plant 7.66E-04 4.30E-05 3.13E+01 1.70E-01 1.79E+01 | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993
EPA, 1993
EPA, 1997
EPA, 1993
EPA,
1993
Intake 7.30E-05 3.44E-06 3.44E-02 1.71E-04 2.37E-03 4.68E-01 Total Intake 7.31E-05 | Intake | | Dfe Dfa Dfa Dfs AUF BW BW BWmean Chemical 4,4'-DDT Aroclor-1254 Barium Chromium Copper Zinc TOTAL INTAKE INTAKE = Soil Intake + Food I Chemical 4,4'-DDT Aroclor-1254 Barium | Dietary fraction of a Dietary fraction of p Area Use Factor Minimum Body weight (Earthworm 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 6.61E+02 | rthropods (unitless) lants, seeds and other veg ght (kg) Arthropod 1.03E-01 4.86E-03 4.58E+01 2.27E-01 1.79E+00 | Plant 7.66E-04 4.30E-05 3.13E+01 1.70E-01 1.79E+01 | 4.60E-01
8.00E-02
1
6.30E-02 | EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 Intake 7.30E-05 3.44E-06 3.44E-02 1.71E-04 2.37E-03 4.68E-01 Total Intake 7.31E-05 3.62E-06 4.50E-02 | State | Notes: * Expressed in dry weight. ### **TABLE D-9** INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN Large Avian Carnivore (RED-TAILED HAWK) | | | ` | | | | | |---|---|-------------|----------|----------------|-----------------------|-------------------------| | SOIL INGESTION | | | | | | | | INTAKE = (Sc * IR * A | F * AUF) / (BW) | | | | | | | Parameter | Definition | | | Value | Reference | | | Intake | Intake of chemical (mg/kg-day) | | | calculated | | | | Sc | Soil concentration (mg/kg) | | | see Table D-2 | | | | IR | Maximum Ingestion rate of soil (| kg/day)* | | 8.97E-06 | EPA, 1993 | | | IR _{max} | Mean Ingestion rate of soil (kg/d | ay)* | | 8.97E-06 | EPA, 1993 | | | AF | Chemical Bioavailability in soil (| | | 1 | EPA, 1997 | | | AUF | Area Use Factor | , | | 1 | EPA, 1997 | | | AUF | Area Use Factor - Refined | | | 1.88E-02 | EPA, 1997 | | | BW | Minimum Body weight (kg) | | | 9.57E-01 | EPA, 1993 | | | Bw _{mean} | Mean Body weight (kg) | | | 1.70E+00 | avis and Schmidly, 20 | 009 | | | | | | | | | | Chemical | | | Sc | | Intake | Refined
Intake | | Criemical | | | 30 | | ilitane | ilitake | | 4,4'-DDT | | | 5.00E-04 | | 4.69E-09 | 4.96E-11 | | Aroclor-1254 | | | 4.29E-03 | | 4.02E-08 | 4.26E-10 | | Barium | | | 2.64E+02 | | 2.48E-03 | 2.62E-05 | | Chromium | | | 4.86E+01 | | 4.55E-04 | 4.82E-06 | | Copper | | | 7.00E+01 | | 6.56E-04 | 6.94E-06 | | Zinc | | | 2.34E+03 | | 2.20E-02 | 2.32E-04 | | FOOD INGESTION | | | | | | | | | Dfm * AUF)/(BW) + (Cb * IR * DFb * AUF) / (BW | /)) | | | | | | ((************************************* | | - // | | | | | | Parameter | Definition | | | Value | Reference | | | Intake | Intake of chemical (mg/kg-day) | | | calculated | | | | Cm | Mammal concentration (mg/kg) | | | see Table D-15 | | | | Cb | Bird concentration (mg/kg) | | | see Table D-15 | | | | IR | Maximum Ingestion rate of of food (kg/day) | * | | 4.48E-04 | EPA, 1993 | | | IR _{max} | Mean Ingestion rate of of food (kg/day)* | | | 4.48E-04 | EPA, 1993 | | | Dfm | Dietary fraction of small mammals (unitless | :) | | 7.85E-01 | EPA, 1993 | | | Dfb | Dietary fraction of birds (unitless) | , | | 1.00E+00 | EPA, 1993 | | | AUF | Area Use Factor | | | 1 | EPA, 1997 | | | AUF | Area Use Factor - Refined | | | 1.88E-02 | EPA, 1997 | | | BW | Minimum Body weight (kg) | | | 9.57E-01 | EPA, 1993 | | | Bw _{mean} | Mean Body weight (kg) | | | 1.70E+00 | Davis and Schmidly, | 2009 | | | | | | | | | | Chemical | Mammal | Bird | | | Intake | Refined
Intake | | Chemical | iviaminai | bilu | | | ilitake | ilitake | | 4,4'-DDT | 2.62E-05 | 5.39E-05 | | | 3.49E-08 | 3.69E-10 | | Aroclor-1254 | | 2.57E-06 | | | 1.68E-09 | 1.78E-11 | | Barium | | 2.86E-03 | | | 2.39E-06 | 2.53E-08 | | Chromium | | 7.41E-04 | | | 6.20E-07 | 6.56E-09 | | Copper | | 2.03E+01 | | | 1.69E-02 | 1.79E-04 | | Zinc | | 1.48E-01 | | | 6.92E-05 | 7.32E-07 | | TOTAL INTAKE | | | | | | | | | . Food Intoko | | | | | | | INTAKE = Soil Intake - | + Food Intake | | | | | | | Chemical | | | | | Total
Intake | Total Refined
Intake | | 4.41.007 | | | | | 0.055.00 | 4.465.40 | | 4,4'-DDT | | | | | 3.95E-08 | 4.18E-10 | | Aroclor-1254 | | | | | 4.19E-08 | 4.43E-10 | | Barium | | | | | 2.48E-03 | 2.62E-05 | | Chromium | | | | | 4.56E-04 | 4.83E-06 | | Copper | | | | | 1.76E-02 | 1.86E-04 | | Zinc | | | | | 2.20E-02 | 2.33E-04 | Notes: * Expressed in dry weight. # TABLE D-10 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SOIL NORTH OF MARLIN Small Mammalian Herbivore (DEER MOUSE) | Ecological Haza | rd Quotient = Intake/TRV | | |-----------------|----------------------------------|---------------| | | | | | Parameter | Definition | Default | | Intake | Intake of COPEC (mg/kg-day) | see Intake | | TRV | Toxicity Reference Value (mg/kg) | see Table D-3 | | | | | | | | | | | | Refined | TRV | | Refined | |--------------|----------|----------|--------------|------------|----------| | Chemical | Intake | Intake | (deer mouse) | EHQ | EHQ | | 4,4'-DDT | 5.49E-05 | 4.03E-05 | 1.47E-01 | 3.74E-04 | 2.74E-04 | | Aroclor-1254 | 2.62E-06 | 1.95E-06 | 1.55E-01 | < 1.69E-05 | 1.26E-05 | | Barium | 1.63E-01 | 1.18E-01 | 5.18E+01 | 3.15E-03 | 2.27E-03 | | Chromium | 8.79E-04 | 2.01E-03 | 2.40E+00 | 3.66E-04 | 8.37E-04 | | Copper | 8.15E-02 | 5.49E-02 | 5.60E+00 | 1.45E-02 | 9.80E-03 | | Zinc | 3.30E-01 | 2.86E-01 | 7.54E+01 | 4.38E-03 | 3.80E-03 | # TABLE D-11 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SOIL NORTH OF MARLIN Large Mammalian Carnivore (COYOTE) | Ecological Hazard | d Quotient = Intake/TRV | | | | | | |--|---|--|--|--|--|--| | Parameter
Intake
TRV | Definition Intake of COPEC (mg/kg-day) Toxicity Reference Value (mg/kg) | | | | Default
see Intake
see Table D-3 | | | Chemical | | Intake | Refined
Intake | TRV
Coyote | EHQ | Refined
EHQ | | 4,4'-DDT
Aroclor-1254
Barium
Chromium
Copper
Zinc | | 2.88E-07
1.51E-08
7.19E-04
7.84E-05
3.65E-03
4.08E-03 | 1.36E-09
7.16E-11
3.41E-06
3.71E-07
1.73E-05
1.93E-05 | 1.47E-01
1.55E-01
5.18E+01
2.40E+00
5.60E+00
7.54E+01 | 1.96E-0
< 9.75E-0
1.39E-0
3.27E-0
6.51E-0
5.41E-0 | 8 4.62E-10
5 6.58E-08
5 1.55E-07
4 3.08E-06 | # TABLE D-12 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SOIL NORTH OF MARLIN Small Mammalian Omnivore (LEAST SHREW) | Ecological Hazard | Quotient = Intake/TRV | | | | | | |--|---|--|--|--|---|--| | Parameter
Intake
TRV | Definition Intake of COPEC (mg/kg-day) Toxicity Reference Value (mg/kg) | | | | Default
see Intake
see Table D-3 | | | Chemical | | Intake | Refined
Intake | TRV
Least Shrew | EHQ | Refined
EHQ | | 4,4'-DDT
Aroclor-1254
Barium
Chromium
Copper
Zinc | | 8.40E-05
3.99E-06
5.16E-02
1.72E-03
5.91E-03
5.83E-01 | 5.84E-05
2.78E-06
3.59E-02
1.20E-03
4.11E-03
4.06E-01 | 1.47E-01
1.55E-01
5.18E+01
2.40E+00
5.60E+00
7.54E+01 | 5.71E-04 < 2.57E-05 9.97E-04 7.19E-04 1.06E-03 7.73E-03 | 1.79E-05
6.93E-04
5.00E-04
7.35E-04 | # TABLE D-13 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SOIL NORTH OF MARLIN Avian Herbivore/Omnivore (AMERICAN ROBIN) | Parameter | Definition | | | | Default | | | |------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------|-------------------------------|----------------------------------| | Intake | Intake of COPEC (mg/kg-day) | | | | see Intake | | | | TRV | Toxicity Reference Value (mg/kg) | | | | see Table D-3 | | | | Chaminal | | Intalia | Refined | TRV | | EHQ | Refined
EHQ | | Chemical | | Intake | Intake | American Robin | | ENQ | EnQ | | | | 7.31E-05 | 5.48E-05 | 2.27E-01 | | 22E-04 | | | 4,4'-DDT
Aroclor-1254 | | | | | < 3. | | 2.41E-04 | | 4,4'-DDT | | 7.31E-05 | 5.48E-05 | 2.27E-01 | < 3
< 2. | 22E-04 | 2.41E-04
1.51E-05
1.77E-03 | | 4,4'-DDT
Aroclor-1254 | | 7.31E-05
3.62E-06 | 5.48E-05
2.71E-06 | 2.27E-01
1.80E-01 | < 3
< 2
2 | .22E-04
.01E-05 | 2.41E-04
1.51E-05 | | 4,4'-DDT
Aroclor-1254
Barium | | 7.31E-05
3.62E-06
4.50E-02 | 5.48E-05
2.71E-06
3.37E-02 | 2.27E-01
1.80E-01
1.91E+01 | < 3.
< 2.
2.
7. | .22E-04
.01E-05
.35E-03 | 2.41E-0-
1.51E-0-
1.77E-0 | # TABLE D-14 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SOIL NORTH OF MARLIN Large Avian Carnivore (RED-TAILED HAWK) | | d Quotient = Intake/TRV | | | | | | |--------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------|----------------------------------| | Parameter | Definition | | | | Default | | | Intake | Intake of COPEC (mg/kg-day) | | | | see Intake | | | TRV | Toxicity Reference Value (mg/kg) | | | | see Table D-3 | | | | | | Defined | TDV | | Defined | | Chemical | | Intake | Refined
Intake | TRV
Red-Tailed Hawk | EHQ | Refined
EHQ | | | | Intake
3.95E-08 | | | EHQ
< 1.74E-07 | EHQ | | Chemical
4,4'-DDT
Aroclor-1254 | | | Intake | Red-Tailed Hawk | |
EHQ
1.84E-09 | | 4,4'-DDT | | 3.95E-08 | Intake
4.18E-10 | Red-Tailed Hawk 2.27E-01 | < 1.74E-07 | 1.84E-09
2.46E-09
8.33E-07 | | 4,4'-DDT
Aroclor-1254
Barium | | 3.95E-08
4.19E-08 | 4.18E-10
4.43E-10 | 2.27E-01
1.80E-01 | < 1.74E-07
< 2.33E-07 | 1.84E-09
2.46E-09
8.33E-07 | | 4,4'-DDT
Aroclor-1254 | | 3.95E-08
4.19E-08
2.48E-03 | 4.18E-10
4.43E-10
2.62E-05 | 2.27E-01
1.80E-01
3.15E+01 | < 1.74E-07
< 2.33E-07
7.87E-05 | 1.84E-09
2.46E-09 | ### TABLE D-15 CONCENTRATION OF CHEMICAL IN FOOD ITEM (mg/kg) Cfood = Csoil x BCF (or BAF) Chemical Concentration in food (mg/kg dry) Chemical Concentration in soil (mg/kg dry) Bioconcentration Factor (unitless) Bioaccumulation Factor (unitless) Cfood = Csoil = BCF BAF = | Compound | Csoil | Soil to Earthworm | Earthworm | Reference | Soil to Arthropod | Arthropod | Reference S | oil to Plant | Plant/Fruit/Seed | Reference | Plant to Wildlife | Plant to Deer Mouse | Reference | Soil to Wildlife | Soil to Deer Mouse | Reference | TOTAL DEER MOUSE | Plant to Bird | Plant to Bird Reference | Soil to Bird | Soil to Bird | Reference | TOTAL BIRD | |--------------|----------|-------------------|---------------|--------------|-------------------|---------------|-------------|--------------|------------------|---------------|-------------------|---------------------|-----------|------------------|--------------------|---------------|------------------|---------------|-------------------------|--------------|---------------|--------------|---------------| | | (mg/kg) | BCF | Concentration | | BCF | Concentration | | BAF | Concentration | | BCF | Concentration | | BCF | Concentration | | CONCENTRATION | BCF | Concentration | BCF | Concentration | 1 (| CONCENTRATION | 4,4'-DDT | 8.18E-02 | 1.26E+00 | 1.03E-01 | EPA, 1999 | 1.26E+00 | 1.03E-01 | EPA, 1999 | 9.37E-03 | 7.66E-04 | EPA, 1999 | 2.72E-02 | 2.08E-05 | EPA, 1999 | 6.52E-05 | 5.33E-06 | EPA, 1999 | 2.62E-05 | 1.59E-02 | 1.22E-05 EPA, 1999 | 5.10E-04 | 4.17E-05 | EPA, 1999 | 5.39E-05 | | Aroclor-1254 | 4.30E-03 | 1.13E+00 | 4.86E-03 | EPA, 1999 | 1.13E+00 | 4.86E-03 | EPA, 1999 | 1.00E-02 | 4.30E-05 | EPA, 1999 | 2.43E-02 | 1.04E-06 | EPA, 1999 | 5.83E-05 | 2.51E-07 | EPA, 1999 | 1.30E-06 | 1.42E-02 | 6.11E-07 EPA, 1999 | 4.55E-04 | 1.96E-06 | EPA, 1999 | 2.57E-06 | | Barium | 2.08E+02 | 2.20E-01 | 4.58E+01 | Sample, 1998 | 2.20E-01 | 4.58E+01 | Sample, 199 | 1.50E-01 | 3.13E+01 | Bechtel, 1998 | 8.99E-05 | 2.81E-03 | EPA, 1999 | 2.16E-07 | 4.50E-05 | Sample, 1998a | 2.86E-03 | 8.99E-05 | 2.81E-03 EPA, 1999 | 2.16E-07 | 4.50E-05 | Sample, 199 | 2.86E-03 | | Chromium | 2.27E+01 | 1.00E-02 | 2.27E-01 | Sample, 1998 | 1.00E-02 | 2.27E-01 | Sample, 199 | 7.50E-03 | 1.70E-01 | Bechtel, 1998 | 3.30E-03 | 5.62E-04 | EPA, 1999 | 7.91E-06 | 1.80E-04 | Sample, 1998a | 7.41E-04 | 3.30E-03 | 5.62E-04 EPA, 1999 | 7.91E-06 | 1.80E-04 | Sample, 1998 | 7.41E-04 | | Copper | 4.48E+01 | 4.00E-02 | 1.79E+00 | EPA, 1999 | 4.00E-02 | 1.79E+00 | EPA, 1999 | 4.00E-01 | 1.79E+01 | EPA, 1999 | 1.00E+00 | 1.79E+01 | ** | 5.25E-02 | 2.35E+00 | Sample, 1998a | 2.03E+01 | 1.00E+00 | 1.79E+01 ** | 5.25E-02 | 2.35E+00 | Sample, 199 | 2.03E+01 | | Zinc | 1.18E+03 | 5.60E-01 | 6.61E+02 | EPA, 1999 | 5.60E-01 | 6.61E+02 | EPA, 1999 | 1.20E-12 | 1.42E-09 | EPA, 1999 | 5.39E-05 | 7.64E-14 | EPA, 1999 | 1.29E-07 | 1.52E-04 | EPA, 1999 | 1.52E-04 | 3.89E-03 | 5.51E-12 EPA, 1999 | 1.25E-04 | 1.48E-01 | EPA, 1999 | 1.48E-01 | Notes: +surface soil data were used because it was not a COPEC for all soil. For vanadium and molybdenum, the BCF values for chromium were used since they are in transitional elements with similar properties. *Tor BAFs and BCFs for LPAHs and HPAHs, the most conservative value for the individual PAHs was used to estimated food concentrations. **If no BAF or BCF was available in the literature, a default value of 1.0 was used. # TABLE E-1 EXPOSURE POINT CONCENTATION (mg/kg) INTRACOASTAL WATERWAY SEDIMENT | Parameter | | Exposure Point Concentraiton | Statistic Used | |-----------------------|---|------------------------------|----------------------| | SEDIMENT | | | | | 4,4'-DDT | < | 2.03E-04 | median | | Acenaphthene | < | 1.35E-02 | median | | Benzo(a)anthracene | < | 1.38E-02 | 99% Chebyshev | | Chrysene | | 2.73E-01 | 97.5% KM (Chebyshev) | | Dibenz(a,h)anthracene | < | 1.57E-02 | median | | Fluoranthene | | 4.39E-01 | 97.5% KM (Chebyshev) | | Fluorene | < | 1.38E-02 | median | | Hexachlorobenzene | < | 1.62E-02 | median | | Phenanthrene | | 2.80E-01 | 97.5% KM (Chebyshev) | | Pyrene | | 4.82E-01 | 97.5% KM (Chebyshev) | | LPAH | | 3.40E-01 | | | НРАН | | 1.88E+00 | | | TOTAL PAHs | | 2.22E+00 | | ## TABLE E-2 TOXICITY REFERENCE VALUES | | Polychaetes | | | Polychaetes | | | Avian Carnivore (Sandpiper) | | | Avian Carnivore
(Green heron) | | | |-----------------------|-------------|--------|----------|-------------|--------|----------|-----------------------------|------------|---|----------------------------------|------------|---| | Parameter | (mg/kg) | Ref. | Comments | (mg/kg) | Ref. | Comments | (mg/kgBW-day) | Ref. | Comments | (mg/kgBW-day) | Ref. | Comments | | | | | | | | | | | Highest bounded NOAEL for
growth and reproduction
lower than the lowest
bounded LOAEL for
reproduction, growth, and | | | Highest bounded NOAEL
for growth and reproduction
lower than the lowest
bounded LOAEL for
reproduction, growth, and | | 4,4'-DDT | 1.19E-03 | SQUIRT | ERL | 6.29E-02 | SQUIRT | ERM | 2.27E-01 | EPA, 2007a | survival | 2.27E-01 | EPA, 2007a | survival | | Acenaphthene | 4.40E-02 | SQUIRT | ERL | 6.40E-01 | SQUIRT | ERM | | | | | | | | Benzo(a)anthracene | 2.61E-01 | SQUIRT | ERL | 1.60E+00 | SQUIRT | ERM | | | | | | | | Chrysene | 3.84E-01 | SQUIRT | ERL | 2.80E+00 | SQUIRT | ERM | | | | | | | | Dibenz(a,h)anthracene | 6.34E-02 | SQUIRT | ERL | 2.60E-01 | SQUIRT | ERM | | | | | | | | Fluoranthene | 6.00E-01 | SQUIRT | ERL | 5.10E+00 | SQUIRT | ERM | | | | | | | | Fluorene | 1.90E-02 | SQUIRT | ERL | 5.40E-01 | SQUIRT | ERM | | | | | | | | Hexachlorobenzene | 6.00E-03 | SQUIRT | AET | 6.00E-03 | SQUIRT | AET | 2.25E-01 | EPA, 1999 | avian TRV for soil | 2.25E-01 | EPA, 1999 | avian TRV for soil | | Phenanthrene | 2.40E-01 | SQUIRT | ERL | 1.50E+00 | SQUIRT | ERM | | | | | | | | Pyrene | 6.65E-01 | SQUIRT | ERL | 2.60E+00 | SQUIRT | ERM | | | | | | | | LPAH | 5.52E-01 | SQUIRT | ERL | 3.16E+00 | SQUIRT | ERM | | | | | | | | HPAH | 1.70E+00 | SQUIRT | ERL | 9.60E+00 | SQUIRT | ERM | | | | | | | | TOTAL PAHs | 4.02E+00 | SQUIRT | ERL | 4.48E+01 | SQUIRT | ERM | | | | | | | Notes: ERL -- Effects Range-Low AET -- Apparent Effects Threshold EPA, 2007a -- DDT EPA, 2007b -- PAHs ## TABLE E-3 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR INTRACOASTAL WATERWAY SEDIMENT Polychaetes | Ecological Hazard Quo | tient = Sc/TRV | | | |-----------------------|---|-----------------------------|----------------------| | Parameter
Sc | Definition Sediment Concentration (mg/kg) | | Default
see below | | TRV | Toxicity Reference Value (mg/kg) | | see Table F-2 | | | | | | | Chemical | Exposure Point Concen (Sc) | tration* TRV
polychaetes | Maximum
EHQ⁺ | | 4,4'-DDT | 3.32E-03 | 1.19E-03 | 2.79E+00 | | Acenaphthene | 6.31E-02 | 4.40E-02 | 1.43E+00 | | Benzo(a)anthracene | 3.95E-01 | 2.61E-01 | 1.51E+00 | | Chrysene | 4.75E-01 | 3.84E-01 | 1.24E+00 | | Dibenz(a,h)anthracene | 2.35E-01 | 6.34E-02 | 3.71E+00 | | Fluoranthene | 8.04E-01 | 6.00E-01 | 1.34E+00 | | Fluorene | 4.60E-02 | 1.90E-02 | 2.42E+00 | | Hexachlorobenzene | 3.19E-02 | 6.00E-03 | 5.32E+00 | | Phenanthrene | 5.08E-01 | 2.40E-01 | 2.12E+00 | | Pyrene | 8.62E-01 | 6.65E-01 | 1.30E+00 | | L DALL | 7.11E-01 | 5.52E-01 | 1.29E+00 | | LPAH | = 0. | | | | LPAH
HPAH | 4.91E+00 | 1.70E+00 | 2.89E+00 | Notes: ^{*}EPC for benthic receptors is maximum measured concentration. *Shading indicates HQ > 1. ## TABLE E-4 INTAKE CALCULATIONS FOR INTRACOASTAL WATERWAY SEDIMENT Avian Carnivore (SANDPIPER) | | Avian Carnivore (| SANDPIPER) | | | |---------------------------------|---|----------------------|-----------------------------|------------------------| | SEDIMENT INGESTION | | | | | | NITALE (0 +15 + 45 + 415) | / (DM) | | | | | INTAKE = (Sc * IR * AF * AUF) / | / (BW) | | | | | Parameter | Definition | | Value | Reference | | Intake | Intake of chemical (mg/kg-day) | | calculated | Reference | | Sc | Sediment concentration (mg/kg) | | see Table F-1 | | | IR - refined | Mean Ingestion rate of sed (kg/day)*** | | 5.34E-06 | EPA, 1993 | | IR | Maximum Ingestion rate of sed (kg/day)*** | | 5.34E-06 | EPA, 1993 | | AF | Chemical Bioavailability in sediment (unitless) | | 1 | EPA, 1997 | | AUF - refined | Refined Area Use Factor | | 1 | EPA, 1993 | | AUF
BW - refined | Default Area Use Factor | | 1
4.25E-02 | EPA, 1997 | | BW - relined | Mean Body weight (kg) Minimum Body weight (kg) | | 3.40E-02 | EPA, 1993
EPA, 1993 | | BW | William Body Weight (kg) | | 3.40L-02 | LI A, 1995 | | | | | | | | Chemical | | Sc | Intake | Intake - Refined | | 4,4'-DDT | | 2.03E-04 | 3.19E-08 | 2.55E-08 | | Acenaphthene | | 1.35E-02 | 2.12E-06 | 1.70E-06 | | Benzo(a)anthracene | | 1.38E-02 | 2.17E-06 | 1.73E-06 | | Chrysene | | 2.73E-01 | 4.28E-05 | 3.43E-05 | | Dibenz(a,h)anthracene | | 1.57E-02 | 2.46E-06 | 1.97E-06 | | Fluoranthene | | 4.39E-01 | 6.89E-05 | 5.51E-05 | | Fluorene
Hexachlorobenzene | | 1.38E-02
1.62E-02 | 2.17E-06
2.54E-06 | 1.73E-06
2.03E-06 | | Phenanthrene | | 2.80E-01 | 4.39E-05 | 3.52E-05 | |
Pyrene | | 4.82E-01 | 7.56E-05 | 6.05E-05 | | LPAH | | 3.40E-01 | 5.33E-05 | 4.27E-05 | | HPAH | | 1.88E+00 | 2.95E-04 | 2.36E-04 | | TOTAL PAHs | | 2.22E+00 | 3.48E-04 | 2.78E-04 | | FOOD INGESTION | | | | | | |)/(BW) + (Cw * IR * DFw * AUF) / (BW) | | | | | Parameter | Definition | | Value | Reference | | Intake
Cc | Intake of chemical (mg/kg-day) | | calculated
see Table F-8 | | | Cw | Crab concentration (mg/kg) Worm concentration (mg/kg) | | see Table F-8 | | | IR - refined | Mean Ingestion rate of food (kg/day)*** | | 2.81E-05 | EPA, 1993 | | IR | Maximum Ingestion rate of food (kg/day)*** | | 2.81E-05 | EPA, 1993 | | Dfc | Dietary fraction of crabs (unitless) | | 4.00E-01 | prof. judgement | | Dfw | Dietary fraction of worms (unitless) | | 6.00E-01 | prof. judgement | | AUF - refined | Refined Area Use Factor | | 1 | EPA, 1993 | | AUF | Default Area Use Factor | | 1 | EPA, 1997 | | BW - refined | Mean Body weight (kg) | | 4.25E-02 | EPA, 1993 | | BW | Minimum Body weight (kg) | | 3.40E-02 | EPA, 1993 | | | | | | | | Chemical | Crab | Worm | Intake | Intake - Refined | | 4,4'-DDT | 2.98E-03 | 1.62E-04 | 1.06E-06 | 8.51E-07 | | Acenaphthene | 1.35E-02 | 2.17E-02 | 1.52E-05 | 1.22E-05 | | Benzo(a)anthracene | 2.92E-01 | 2.00E-02 | 1.06E-04 | 8.51E-05 | | Chrysene | 1.49E-01 | 3.77E-01 | 2.36E-04 | 1.89E-04 | | Dibenz(a,h)anthracene | 2.47E-01 | 2.53E-02 | 9.41E-05 | 7.53E-05 | | Fluoranthene | 4.39E-01 | 7.07E-01 | 4.95E-04 | 3.96E-04 | | Fluorene | 1.38E-02 | 2.22E-02 | 1.56E-05 | 1.25E-05 | | Hexachlorobenzene | 2.90E-01 | 8.29E-03 | 9.99E-05 | 7.99E-05 | | Phenanthrene | 2.80E-01 | 4.51E-01 | 3.16E-04 | 2.53E-04 | | Pyrene
LPAH | 4.82E-01 | 7.76E-01
5.47E-01 | 5.44E-04 | 4.35E-04 | | HPAH | 1.77E+02
1.11E+00 | 3.02E+00 | 5.87E-02
1.86E-03 | 4.70E-02
1.49E-03 | | TOTAL PAHs | 6.14E+00 | 3.57E+00 | 3.80E-03 | 3.04E-03 | | TOTAL INTAKE | | | | | | INTAKE = Sediment Intake + Su | urface Water Intake + Food Intake | | | | | | | | T | Total | | Chemical | | | Total
Intake | Intake - Refined | | 4,4'-DDT | | | 1 105 06 | 8 76E-07 | | 4,4-DD1
Acenaphthene | | | 1.10E-06
1.74E-05 | 8.76E-07
1.39E-05 | | Benzo(a)anthracene | | | 1.09E-04 | 8.69E-05 | | Chrysene | | | 2.79E-04 | 2.23E-04 | | Dibenz(a,h)anthracene | | | 9.66E-05 | 7.73E-05 | | Fluoranthene | | | 5.64E-04 | 4.51E-04 | | Fluorene | | | 1.77E-05 | 1.42E-05 | | Hexachlorobenzene | | | 1.02E-04 | 8.20E-05 | | Phenanthrene | | | 3.60E-04 | 2.88E-04 | | Pyrene | | | 6.20E-04 | 4.96E-04 | | LPAH
HPAH | | | 5.87E-02 | 4.70E-02
1.73E-03 | | TOTAL PAHs | | | 2.16E-03
4.14E-03 | 1.73E-03
3.32E-03 | | 1 | | | | | NOTES: Shaded rows are the exposure parameters to be used in the Refinement Step 3a of the ERA process. Ingestion rate equations, inclusive of body weight, are the same as those used in pre-Refinement calculations. **Total Intake for the COPEC includes all three exposure pathways. **COPEC was measured in crab tissue and water, but not in sediment. ***Expressed in dry weight. ## TABLE E-5 INTAKE CALCULATIONS FOR INTRACOASTAL WATERWAY SEDIMENT Avian Carnivore (GREEN HERON) | | Avian Carnivore | (OKEEN HERON) | | | | |---|---|----------------------|-----------------------------|---------------------------|--| | SEDIMENT INGESTION | | | | | | | INTAKE = (Sc * IR * AF * AUF) | / (BW) | | | | | | | | | | | | | Parameter
Intake | Definition Intake of chemical (mg/kg-day) | | Value calculated | Reference | | | Sc | Sediment concentration (mg/kg) | | see Table F-1 | | | | IR - refined | Mean Ingestion rate of sed (kg/day)*** | | 1.88E-06 | EPA, 1993 | | | IR | Maximum Ingestion rate of sed (kg/day)*** | | 1.88E-06 | EPA, 1993 | | | AF
AUF - refined | Chemical Bioavailability in sediment (unitle
Refined Area Use Factor | ess) | 1 | EPA, 1997
EPA, 1993 | | | AUF | Default Area Use Factor | | 1 | EPA, 1997 | | | BW - refined | Mean Body weight (kg) | | 2.12E-01 | EPA, 1993 | | | BW | Minimum Body weight (kg) | | 1.77E-01 | EPA, 1993 | | | Chemical | | Sc | Intake | Intake - Refined | | | Onomical | | | mano | mano monioa | | | 4,4'-DDT | | 2.03E-04 | 2.16E-09 | 1.80E-09 | | | Acenaphthene
Benzo(a)anthracene | | 1.35E-02
1.38E-02 | 1.43E-07
1.47E-07 | 1.20E-07
1.22E-07 | | | Chrysene | | 2.73E-01 | 2.90E-06 | 2.42E-06 | | | Dibenz(a,h)anthracene | | 1.57E-02 | 1.67E-07 | 1.39E-07 | | | Fluoranthene | | 4.39E-01 | 4.66E-06 | 3.89E-06 | | | Fluorene | | 1.38E-02 | 1.47E-07 | 1.22E-07 | | | Hexachlorobenzene | | 1.62E-02 | 1.72E-07 | 1.43E-07 | | | Phenanthrene | | 2.80E-01 | 2.97E-06 | 2.48E-06 | | | Pyrene | | 4.82E-01 | 5.12E-06 | 4.27E-06 | | | LPAH | | 3.40E-01 | 3.61E-06 | 3.01E-06 | | | HPAH
TOTAL PAHs | | 1.88E+00
2.22E+00 | 1.99E-05
2.35E-05 | 1.66E-05
1.96E-05 | | | |)/(BW) + (Cw * IR * DFw * AUF) / (BW) | | | | | | Parameter | Definition | | Value | Reference | | | Intake
Cc | Intake of chemical (mg/kg-day) Crab concentration (mg/kg) | | calculated
see Table F-8 | | | | Cw | Worm concentration (mg/kg) | | see Table F-8 | | | | IR - refined | Mean Ingestion rate of food (kg/day)*** | | 9.40E-05 | EPA, 1993 | | | IR | Maximum Ingestion rate of of food (kg/day |)*** | 9.40E-05 | EPA, 1993 | | | Dfc | Dietary fraction of crabs (unitless) | | 2.50E-01 | Kent, 1986 | | | Dff | Dietary fraction of fish (unitless) | | 7.50E-01 | Kent, 1986 | | | AUF - refined | Refined Area Use Factor | | 1 | EPA, 1993 | | | AUF | Default Area Use Factor | | 1 2 425 04 | EPA, 1997 | | | BW - refined
BW | Mean Body weight (kg) Minimum Body weight (kg) | | 2.12E-01
1.77E-01 | EPA, 1993
EPA, 1993 | | | | | | | | | | Chemical | Crab | Fish | Intake | Intake - Refined | | | 4,4'-DDT | 2.98E-03 | 1.18E-04 | 4.42E-07 | 3.68E-07 | | | Acenaphthene | 1.35E-02 | 6.68E-03 | 4.45E-06 | 3.71E-06 | | | Benzo(a)anthracene | 2.92E-01 | 9.11E-03 | 4.24E-05 | 3.53E-05 | | | Chrysene | 1.49E-01 | 1.80E-01 | 9.15E-05 | 7.63E-05 | | | Dibenz(a,h)anthracene | 2.47E-01 | 1.04E-02 | 3.69E-05 | 3.08E-05 | | | Fluoranthene
Fluorene | 4.39E-01 | 2.90E-01 | 1.74E-04 | 1.45E-04 | | | Fluorene
Hexachlorobenzene | 1.38E-02
2.90E-01 | 6.83E-03
2.30E-02 | 4.55E-06
4.76E-05 | 3.80E-06
3.97E-05 | | | Phenanthrene | 2.80E-01 | 1.39E-01 | 9.23E-05 | 7.70E-05 | | | Pyrene | 4.82E-01 | 3.18E-01 | 1.91E-04 | 1.59E-04 | | | LPAH | 1.77E+02 | 1.68E-01 | 2.35E-02 | 1.96E-02 | | | HPAH | 1.11E+00 | 1.24E+00 | 6.41E-04 | 5.34E-04 | | | TOTAL PAHs | 6.14E+00 | 1.46E+00 | 1.40E-03 | 1.17E-03 | | | TOTAL INTAKE INTAKE = Sediment Intake + Su | urface Water Intake + Food Intake | | | | | | | | | | | | | Chemical | | | Total
Intake | Total
Intake - Refined | | | 4,4'-DDT | | | 4.44E-07 | 3.70E-07 | | | Acenaphthene | | | 4.60E-06 | 3.83E-06 | | | Benzo(a)anthracene | | | 4.25E-05 | 3.55E-05 | | | Chrysene | | | 9.44E-05 | 7.87E-05 | | | Dibenz(a,h)anthracene | | | 3.71E-05 | 3.09E-05 | | | Fluoranthene | | | 1.78E-04 | 1.49E-04 | | | Fluorene | | | 4.70E-06 | 3.92E-06 | | | Hexachlorobenzene | | | 4.78E-05 | 3.99E-05 | | | Phenanthrene | | | 9.53E-05 | 7.95E-05 | | | Pyrene
LPAH | | | 1.96E-04 | 1.63E-04
1.96E-02 | | | LPAH
HPAH | | | 2.35E-02
6.61E-04 | 1.96E-02
5.51E-04 | | | TOTAL PAHs | | | 1.42E-03 | 1.18E-03 | | | | | | 1.422 00 | | | NOTES: Shaded rows are the exposure parameters to be used in the Refinement Step 3a of the ERA process. Ingestion rate equations, inclusive of body weight, are the same as those used in pre-Refinement calculations. **Total Intake for the COPEC includes all three exposure pathways. ***COPEC was measured in crab tissue and water, but not in sediment. ***Expressed in dry weight. ## TABLE E-6 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR INTRACOASTAL WATERWAY SEDIMENT Avian Carnivore (SANDPIPER) | Ecological Hazard Quoti | ent = Total Intake / TRV | | | | | |--|--|--|--|----------------------|----------------------| | Parameter
Total Intake
TRV | Definition Intake of COPEC (mg/kg-da Toxicity Reference Value (m | | Default
see Intake
see Table F-2 | | | | | | | TRV | | | | Chemical | Total
Intake | Total Intake -
Refined | Sandpiper | EHQ | EHQ -
Refined | | 4,4'-DDT Acenaphthene Benzo(a)anthracene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Hexachlorobenzene Phenanthrene Pyrene LPAH HPAH TOTAL PAHs | 1.10E-06
1.74E-05
1.09E-04
2.79E-04
9.66E-05
5.64E-04
1.77E-05
1.02E-04
3.60E-04
6.20E-04
5.87E-02
2.16E-03
4.14E-03 | 8.76E-07
1.39E-05
8.69E-05
2.23E-04
7.73E-05
4.51E-04
1.42E-05
8.20E-05
2.88E-04
4.96E-04
4.70E-02
1.73E-03
3.32E-03 | 2.27E-01 < 2.25E-01 < | 4.83E-06
4.55E-04 | 3.86E-06
3.64E-04 | ### NOTES: ^{*} Total Intake for the COPEC includes surface water exposure pathway. ## TABLE E-7 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR INTRACOASTAL WATERWAY SEDIMENT Avian Carnivore (GREEN HERON) | Ecological Hazard Quo | tient = Total Intake / TRV | | | | | | | |-----------------------|------------------------------|--------------|---------------|---|----------|----------|--| | | | | | | | | | | | Definition | ` | Default | | | | | | | Intake of COPEC (mg/kg-day | | see Intake | | | | | | TRV | Toxicity Reference Value (mg | J/Kg) | see Table F-2 | | | | | | | | | | | | | | | | | | TRV | | | | | | | | Total Intake | | | | EHQ - | | | Chemical | Total Intake | -
Refined | Green Heron | | EHQ | Refined | | | | | | | | | | | | 4,4'-DDT | 4.44E-07 | 3.70E-07 | 2.27E-01 | < | 1.96E-06 | 1.63E-06 | | | Acenaphthene | 4.60E-06 | 3.83E-06 | | | | | | | Benzo(a)anthracene | 4.25E-05 | 3.55E-05 | | | | | | | Chrysene | 9.44E-05 | 7.87E-05 | | | | | | | Dibenz(a,h)anthracene | 3.71E-05 | 3.09E-05 | | | | | | | Fluoranthene | 1.78E-04 | 1.49E-04 | | | | | | | Fluorene | 4.70E-06 | 3.92E-06 | | | | | | | Hexachlorobenzene | 4.78E-05 | 3.99E-05 | 2.25E-01 | < | 2.13E-04 | 1.77E-04 | | | Phenanthrene | 9.53E-05 | 7.95E-05 | | | | | | | Pyrene | 1.96E-04 | 1.63E-04 | | | | | | | LPAH | 2.35E-02 | 1.96E-02 | | | | | | | HPAH | 6.61E-04 | 5.51E-04 | | | | | | | TOTAL PAHs | 1.42E-03 | 1.18E-03 | | | | | | ### NOTES: ^{*} Total Intake for the COPEC includes all three exposure pathways. ## TABLE E-8 CONCENTRATION OF CHEMICAL IN FOOD ITEM (mg/kg) ### Cfood = Csed x BSAF or Cwtr x BCF where: Cfood = Chemical Concentration in food (mg/kg dry) Csed = Chemical Concentration in sediment (mg/kg dry) Cwtr = Chemical Concentration in water (mg/L) BCF = Bioconcentration Factor (unitless) | Compound | Csed | Sediment to Worm | Worm Reference | Sediment to Crab | Crab | Reference | Sediment to Fish | Fish | Reference | |-----------------------|----------|------------------|--------------------|------------------|-----------------|-----------|------------------|-----------------|-----------------------| | · | (mg/kg) | BSAF | Concentration | BSAF | Concentration | | BSAF | Concentration | | | | | | | | | | | | | | 4,4'-DDT | 2.03E-04 | 8.00E-01 | 1.62E-04 BSAF DB | * | 2.98E-03 * | | 5.80E-01 | 1.18E-04 WSDO | H, 1995 | | Acenaphthene | 1.35E-02 | 1.61E+00 | 2.17E-02 EPA, 1999 | 1.00E+00 | 1.35E-02 ** | | 4.950E-01 | 6.68E-03 WSDO | H, 1995 | | Benzo(a)anthracene | 1.38E-02 | 1.45E+00 | 2.00E-02 EPA, 1999 | * | 2.92E-01 * | | 6.60E-01 | 9.11E-03 WSDO | H, 1995 | | Chrysene | 2.73E-01 | 1.38E+00 | 3.77E-01 EPA, 1999 | * | 1.49E-01 * | | 6.60E-01 | 1.80E-01 WSDO | H, 1995 | | Dibenz(a,h)anthracene | 1.57E-02 | 1.61E+00 | 2.53E-02 EPA, 1999 | * | 2.47E-01 * | | 6.60E-01 | 1.04E-02 WSDO | H, 1995 | | Fluoranthene | 4.39E-01 | 1.61E+00 | 7.07E-01 EPA, 1999 | 1.00E+00 | 4.39E-01 ** | | 6.60E-01 | 2.90E-01 WSDO | H, 1995 | | Fluorene | 1.38E-02 | 1.61E+00 | 2.22E-02 EPA, 1999 | 1.00E+00 | 1.38E-02 ** | | 4.95E-01 | 6.83E-03 WSDO | H, 1995 | | Hexachlorobenzene | 1.62E-02 | 5.12E-01 | 8.29E-03 BSAF DB | * | 2.90E-01 * | | 1.42E+00 | 2.30E-02 Max va | lue from Calcasieu RI | | Phenanthrene | 2.80E-01 | 1.61E+00 | 4.51E-01 EPA, 1999 | 1.00E+00 | 2.80E-01 ** | | 4.95E-01 | 1.39E-01 WSDO | H, 1995 | | Pyrene | 4.82E-01 | 1.61E+00 | 7.76E-01 EPA, 1999 | 1.00E+00 | 4.82E-01 ** | | 6.60E-01 | 3.18E-01 WSDO | H, 1995 | | LPAH | 3.40E-01 | 1.61E+00 | 5.47E-01 EPA, 1999 | 3.27E+00 | 1.77E+02 max PA | Н | 4.96E-01 | 1.68E-01 WSDO | H, 1995 | | HPAH | 1.88E+00 | 1.61E+00 | 3.02E+00 EPA, 1999 | 3.27E+00 | 1.11E+00 max PA | Н | 6.60E-01 | 1.24E+00 WSDO | H, 1995 | | TOTAL PAHs | 2.22E+00 | 1.61E+00 | 3.57E+00 EPA, 1999 | 3.27E+00 | 6.14E+00 max PA | Н | 6.60E-01 | 1.46E+00 WSDO | H, 1995 | ### Notes: - * These compounds were analyzed but not detected in any blue crab samples collected at the Site; so value is one-half of maximum detection limit. - *+ These compounds were not included in crab tissue analysis per the approved Sampling & Analysis Plan. - ** If no BAF or BCF was available in the literature, a default value of 1.0 was used. - *** COPEC was measured in crab tissue and surface water, but not in sediment. ## TABLE E-9 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR INTRACOASTAL WATERWAY SEDIMENT Polychaetes -- COMPARED WITH MIDPOINT BETWEEN ERLs and ERMs | Ecological Hazard Qı | uotient = Sc/TRV | | | |------------------------|--|--------------------------------|---------------------------------------| | Parameter
Sc
TRV | Definition Sediment Concentration (mg/kg) Toxicity Reference Value (mg/kg) | | Default
see below
see Table F-2 | | TIXV | Toxicity Neterence value (mg/kg) | | See Table 1 -2 | | Chemical | Exposure Point Cor
(Sc) | ncentration* TRV
polychaete | Maximum
EHQ | | 4,4'-DDT | 3.32E-03 | 3.20E-02 | 1.04E-01 | | Acenaphthene | 6.31E-02 | 3.42E-01 | 1.85E-01 | | Benzo(a)anthracene | 3.95E-01 | 9.31E-01 | 4.25E-01 | | Chrysene | 4.75E-01 | 1.59E+00 | 2.98E-01 | | Dibenz(a,h)anthracer | ne 2.35E-01 | 1.62E-01 | 1.45E+00 | | Fluoranthene | 8.04E-01 | 2.85E+00 | 2.82E-01 | | Fluorene | 4.60E-02 | 2 2.80E-01 | 1.65E-01 | | Hexachlorobenzene | 3.19E-02 | 6.00E-03 | 5.32E+00 | | Phenanthrene | 5.08E-01 | 8.70E-01 | 5.84E-01 | | Pyrene | 8.62E-01 | 1.63E+00 | 5.28E-01 | | LPAH | 7.11E-01 | 1.86E+00 | 3.83E-01 | | LI / (I I | | 5.65E+00 | 8.69E-01 | | HPAH | 4.91E+00 | 5.65E+00 | 8.69E-01 | Notes: ^{*}EPC for benthic receptors is maximum measured concentration. # TABLE F-1 EXPOSURE POINT CONCENTATION (mg/kg) SEDIMENT NORTH OF MARLIN | Davamatav | | Exposure Point Concentration | Statistic | |------------------------|---|------------------------------|----------------------| | Parameter | | Concentration | Used | | SEDIMENT | | 1 005 00 | | | 2-Methylnaphthalene | < | 1.20E-02 | median | | 4,4'-DDT | | 2.52E-03 | 97.5% KM (Chebyshev) | | Acenaphthene | < | 1.10E-02 | median | | Acenaphthylene | < | 1.27E-02 | median | | Anthracene | | 9.70E-02 | 97.5% KM (Chebyshev) | | Arsenic | | 4.81E+00 | 97.5% Chebyshev | | Benzo(a)anthracene | < | 1.14E-02 | median | | Benzo(a)pyrene | | 3.47E-01 | 97.5% Chebyshev | | Benzo(g,h,i)perylene | | 4.49E-01 | 95% KM (BCA) | | Chrysene | | 8.71E-01 | 97.5% Chebyshev | | Copper | | 2.21E+01 | 97.5% Chebyshev | | Dibenz(a,h)anthracene | < | 3.75E-02 | median | | Endrin Aldehyde | | 3.32E-03 | 97.5% Chebyshev | | Endrin Ketone | < | 5.50E-04 | median | | Fluoranthene | | 4.46E-01 | 97.5% Chebyshev | | Fluorene | < | 1.10E-02 | median | | gamma-Chlordane | < | 4.40E-04 | median | | Indeno(1,2,3-cd)pyrene | | 3.17E-01 | 95% KM (BCA) | | Lead | | 4.68E+01 | 95% Chebyshev | | Nickel | | 1.81E+01 | 95% Student's-t | | Phenanthrene | | 1.56E-01 | 95% KM (BCA) | | Pyrene | | 4.71E-01 | 97.5% Chebyshev | | Zinc | | 2.36E+02 | 95% Chebyshev | | LPAH | | 3.00E-01 | - | | НРАН | | 3.24E+00 | | | TOTAL PAHs | | 3.54E+00 | | ## TABLE F-2 TOXICITY REFERENCE VALUES | | | | | | | | Avian Carnivore | | | Avian Carnivore | | | |------------------------|----------------------|---------|-----------------------|----------------------|--------|-----------------------|-----------------|--------------|---|-----------------|--------------|--| | | Polychaetes | | | Polychaetes | | | (Sandpiper) | | | (Green heron) | | | | Parameter | (mg/kg) | Ref. | Comments | (mg/kg) | Ref. | Comments | (mg/kgBW-day) | Ref. | Comments | (mg/kgBW-day) | Ref. | Comments | | 2-Methylnaphthalene | 7.00E-02 | SQUIRT | ERL | 6.70E-01 | SQUIRT | ERM | | | | | | | | | | | | | | | | | Highest bounded NOAEL | | | Highest bounded NOAEL | | | | | | | | | | | for growth and | | | for growth and reproduction | | | | | | | | | | | reproduction lower than | | | lower than the lowest | | | | | | | | | | | the lowest bounded | | | bounded LOAEL for | | | | | | | | | | | LOAEL for reproduction, | | | reproduction, growth, and | | 4,4'-DDT | 1.19E-03 | SQUIRT | ERL | 6.29E-02 | SQUIRT | ERM | 2.27E-01 | EPA, 2007a | growth, and survival | 2.27E-01 | EPA, 2007a | survival | | Acenaphthene | 1.60E-02 | SQUIRT | ERL
ERL | 5.00E-01
6.40E-01 | SQUIRT | ERM
ERM | | | | | | | | Acenaphthylene | 4.40E-02 | SQUIRT | ERL | | SQUIRT | | | | | | | | | Anthracene
Arsenic | 8.53E-02
8.20E+00 | SQUIRT | ERL | 1.10E+00
7.00E+01 | SQUIRT | ERM
ERM | | | | | | | | Benzo(a)anthracene | 2.61E-01 | SQUIRT | ERL | 1.60E+00 | SQUIRT | ERM | | | | | - | | | Benzo(a)pyrene | 4.30E-01 | SQUIRT | ERL | 1.60E+00 | SQUIRT | ERM | | | | | | | | Benzo(g,h,i)perylene | 6.70E-01 | SQUIRT | AET | 6.70E-01 | SQUIRT | AET | | | | | | | | Chrysene | 3.84E-01 | SQUIRT | ERL | 2.80E+00 | SQUIRT | ERM | <u> </u> | 1 | | <u> </u> | 1 | 1 | | - ,··· | 2.2.2 | | | | | | 1 | 1 | Highest bounded NOAEL | 1 | | Highest bounded NOAEL | | | | | | | | | | | for growth and | | | for growth and reproduction | | | | | | | | | | | reproduction lower than | | | lower than the lowest | | | | | | | | | | | the lowest bounded | | | bounded LOAEL for | | | | | | | | | | | LOAEL for reproduction, | | | reproduction, growth, and | | Copper | 3.40E+01 | SQUIRT | ERL | 2.70E+02 | SQUIRT | ERM | 4.05E+00 | EPA, 2007c | growth, and survival | 4.05E+00 | EPA, 2007c | survival | | Dibenz(a,h)anthracene | 6.34E-02 | SQUIRT | ERL | 2.60E-01 | SQUIRT | ERM | | | | | | | | | | | TEL for | | | PEL for | | | Chronic LOAEL in screech | | | Chronic LOAEL in screech | | | | | freshwater | | | freshwater | | | owl with an uncertainty | | | owl with an uncertainty | | Endrin Aldehyde | 2.67E-03 | SQUIRT | sediment | 6.24E-02 | SQUIRT | sediment | 1.00E-02 | Sample, 1996 | | 1.00E-02 | Sample, 1996 | factor of 0.1
Chronic LOAEL in screech | | | | | TEL for
freshwater | | | PEL for
freshwater | | | Chronic LOAEL in screech
owl with an uncertainty | | | owl with an uncertainty | | Endrin Ketone | 2.67E-03 | SQUIRT | sediment | 6.24E-02 | SQUIRT | sediment | 1.00E-02 | Sample, 1996 | factor of 0.1 | 1.00E-02 | Sample, 1996 | factor of 0.1 | | Fluoranthene | 6.00E-01 | SQUIRT | ERL | 5.10E+00 | SQUIRT | ERM | 1.00E-02 | Sample, 1996 | Tactor or U. I | 1.00E-02 | Sample, 1996 | factor or 0.1 | | Fluorene | 1.90E-02 | SQUIRT | ERL | 5.40E-01 | SQUIRT | ERM | | | | | | | | Tuorene | 1.502 02 | OQUIITI | | 0.102 01 | OQUIRT | 2 | | | Chronic NOAEL in red- | | | Chronic NOAEL in red- | | gamma-Chlordane | 2.60E-03 | SQUIRT | ERL | 4.79E-03 | SQUIRT | ERM | 2.14E+00 | Sample, 1996 | |
2.14E+00 | Sample, 1996 | winged blackbird | | Indeno(1,2,3-cd)pyrene | 6.00E-01 | SQUIRT | AET | 6.00E-01 | SQUIRT | AET | | | g | | | g | | , , , , , , , , | | | | | | | | | Highest bounded NOAEL | | | Highest bounded NOAEL | | | | | | | | | | | for growth and | | | for growth and reproduction | | | | | | | | | | | reproduction lower than | | | lower than the lowest | | | | | | | | | | | the lowest bounded | | | bounded LOAEL for | | | | | | | | | | | LOAEL for reproduction, | | | reproduction, growth, and | | Lead | 4.67E+01 | SQUIRT | ERL | 2.18E+02 | SQUIRT | ERM | 1.63E+00 | EPA, 2005e | growth, and survival | 1.63E+00 | EPA, 2005e | survival | | | | | | | | | | | Highest bounded NOAEL | | | Highest bounded NOAEL | | | | | | | | | | | for growth and | | | for growth and reproduction | | | | | | | | | | | reproduction lower than
the lowest bounded | | | lower than the lowest
bounded LOAEL for | | | | | | | | | | | LOAEL for reproduction, | | | reproduction, growth, and | | Nickel | 2.09E+01 | SQUIRT | ERL | 5.16E+01 | SQUIRT | ERM | 6.71E+00 | EPA, 2007d | growth, and survival | 6.71E+00 | EPA, 2007d | survival | | Phenanthrene | 2.40E-01 | SQUIRT | ERL | 1.50E+00 | SQUIRT | ERM | 0.712100 | _171, 2007u | g. 5 min, and sarvival | 0.712100 | _171, 2007u | Julylvai | | Pyrene | 6.65E-01 | SQUIRT | ERL | 2.60E+00 | SQUIRT | ERM | 1 | | | 1 | | | | | | | | , | | | İ | 1 | Geometric mean of | İ | | Geometric mean of NOAEL | | | | | | | | | 1 | | NOAEL values within the | 1 | | values within the | | | | | | | | | 1 | | reproductive and growth | 1 | | reproductive and growth | | Zinc | 1.50E+02 | SQUIRT | ERL | 4.10E+02 | SQUIRT | ERM | 6.61E+01 | EPA, 2007e | effect groups | 6.61E+01 | EPA, 2007e | effect groups | | LPAH | 5.52E-01 | SQUIRT | ERL | 3.16E+00 | SQUIRT | ERM | | | | | | | | HPAH | 1.70E+00 | SQUIRT | ERL | 9.60E+00 | SQUIRT | ERM | | | | | | | | TOTAL PAHs | 4.02E+00 | SQUIRT | ERL | 4.48E+01 | SQUIRT | ERM | | | | | | | | 1 | | | | | | | | | | | | | Notes: ERL -- Effects Range-Low AET -- Apparent Effects Threshold TEL -- Threshold Effects Level PEL -- Probably Effects Level EPA, 2007a -- DDT EPA, 2007b -- PAHs EPA, 2007d -- Nickel EPA, 2007c -- Copper EPA, 2007c -- Copper EPA, 2005e -- Lead ## TABLE F-3 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SEDIMENT NORTH OF MARLIN POLYCHAETES | Ecological Hazard | Quotient = | Sc/TRV | | |-------------------|------------|-------------------------|---------------| | | | | | | | | | | | Parameter | Definition | | Default | | Sc | Sedimen | Concentration (mg/kg) | see below | | TRV | Toxicity I | Reference Value (mg/kg) | see Table H-2 | | | | | | | | Exposure Point Concentra | ation* TRV | Maximum | |------------------------|--------------------------|-------------|----------| | Chemical | (Sc) | polychaetes | EHQ⁺ | | 2-Methylnaphthalene | 4.30E-01 | 7.00E-02 | 6.14E+00 | | 4,4'-DDT | 9.22E-03 | 1.19E-03 | 7.75E+00 | | Acenaphthene | 1.33E-01 | 1.60E-02 | 8.31E+00 | | Acenaphthylene | 5.45E-01 | 4.40E-02 | 1.24E+01 | | Anthracene | 3.34E-01 | 8.53E-02 | 3.92E+00 | | Arsenic | 1.28E+01 | 8.20E+00 | 1.56E+00 | | Benzo(a)anthracene | 9.93E-01 | 2.61E-01 | 3.80E+00 | | Benzo(a)pyrene | 1.30E+00 | 4.30E-01 | 3.02E+00 | | Benzo(g,h,i)perylene | 1.94E+00 | 6.70E-01 | 2.90E+00 | | Chrysene | 4.05E+00 | 3.84E-01 | 1.05E+01 | | Copper | 4.90E+01 | 3.40E+01 | 1.44E+00 | | Dibenz(a,h)anthracene | 2.91E+00 | 6.34E-02 | 4.59E+01 | | Endrin Aldehyde | 1.00E-02 | 2.67E-03 | 3.75E+00 | | Endrin Ketone | 1.30E-02 | 2.67E-03 | 4.87E+00 | | Fluoranthene | 2.17E+00 | 6.00E-01 | 3.62E+00 | | Fluorene | 1.39E-01 | 1.90E-02 | 7.32E+00 | | gamma-Chlordane | 3.60E-03 | 2.60E-03 | 1.38E+00 | | Indeno(1,2,3-cd)pyrene | 1.94E+00 | 6.00E-01 | 3.23E+00 | | Lead | 2.37E+01 | 4.67E+01 | 5.07E-01 | | Nickel | 2.77E+01 | 2.09E+01 | 1.33E+00 | | Phenanthrene | 1.30E+00 | 2.40E-01 | 5.42E+00 | | Pyrene | 1.64E+00 | 6.65E-01 | 2.47E+00 | | Zinc | 9.03E+02 | 1.50E+02 | 6.02E+00 | | LPAH | 1.15E+00 | 5.52E-01 | 2.08E+00 | | HPAH | 1.39E+01 | 1.70E+00 | 8.19E+00 | | TOTAL PAHs | 1.51E+01 | 4.02E+00 | 3.75E+00 | Notes: *EPC for benthic receptors is maximum measured concentration. *Shading indicates HQ > 1. ## TABLE F-4 INTAKE CALCULATIONS FOR SEDIMENT NORTH OF MARLIN Avian Carnivore (SANDPIPER) | SEDIMENT INGESTION | | | | | |---|---|--|---|--| | INTAKE = (Sc * IR * AF * AUF) | / (BW) | | | | | | | | | | | Parameter
Intake | Definition Intake of chemical (mg/kg-day) | | Value calculated | Reference | | Sc | Sediment concentration (mg/kg) | | see Table H-1 | | | IR - refined | Mean Ingestion rate of sed (kg/day)** | | 5.34E-06 | EPA, 1993 | | IR | Maximum Ingestion rate of sed (kg/day)** | \ | 5.34E-06 | EPA, 1993 | | AF
AUF - refined | Chemical Bioavailability in sediment (unitle
Refined Area Use Factor | SS) | 1
1 | EPA, 1997
EPA, 1993 | | AUF | Default Area Use Factor | | 1 | EPA, 1997 | | BW - refined | Mean Body weight (kg) | | 4.25E-02 | EPA, 1993 | | BW | Minimum Body weight (kg) | | 3.40E-02 | EPA, 1993 | | Chamical | | e. | Intoleo | Intoko Dofinad | | Chemical | | Sc | Intake | Intake - Refined | | 2-Methylnaphthalene | | 1.20E-02 | 1.88E-06 | 1.51E-06 | | 4,4'-DDT
Acenaphthene | | 2.52E-03
1.10E-02 | 3.96E-07 | 3.16E-07 | | Acenaphthylene | | 1.10E-02
1.27E-02 | 1.73E-06
1.99E-06 | 1.38E-06
1.59E-06 | | Anthracene | | 9.70E-02 | 1.52E-05 | 1.22E-05 | | Arsenic | | 4.81E+00 | 7.55E-04 | 6.04E-04 | | Benzo(a)anthracene | | 1.14E-02 | 1.78E-06 | 1.43E-06 | | Benzo(a)pyrene | | 3.47E-01 | 5.45E-05 | 4.36E-05 | | Benzo(g,h,i)perylene | | 4.49E-01
8.71E-01 | 7.05E-05
1.37F-04 | 5.64E-05
1.09E-04 | | Chrysene
Copper | | 8.71E-01
2.21E+01 | 1.37E-04
3.47E-03 | 1.09E-04
2.78E-03 | | Dibenz(a,h)anthracene | | 3.75E-02 | 5.89E-06 | 4.71E-06 | | Endrin Aldehyde | | 3.32E-03 | 5.21E-07 | 4.17E-07 | | Endrin Ketone | | 5.50E-04 | 8.63E-08 | 6.91E-08 | | Fluoranthene | | 4.46E-01 | 7.00E-05 | 5.60E-05 | | Fluorene | | 1.10E-02 | 1.73E-06 | 1.38E-06 | | gamma-Chlordane | | 4.40E-04
3.17E-01 | 6.91E-08 | 5.52E-08 | |
Indeno(1,2,3-cd)pyrene
Lead | | 3.17E-01
4.68E+01 | 4.98E-05
7.35E-03 | 3.98E-05
5.88E-03 | | Nickel | | 1.81E+01 | 2.84E-03 | 2.27E-03 | | Phenanthrene | | 1.56E-01 | 2.45E-05 | 1.96E-05 | | Pyrene | | 4.71E-01 | 7.39E-05 | 5.91E-05 | | Zinc | | 2.36E+02 | 3.70E-02 | 2.96E-02 | | LPAH | | 3.00E-01 | 4.70E-05 | 3.76E-05 | | | | | | | | HPAH | | 3.24E+00 | 5.08E-04 | 4.07E-04 | | | | 3.24E+00
3.54E+00 | 5.56E-04 | 4.07E-04
4.44E-04 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter | r)/(BW) + (Cw * IR * DFw * AUF) / (BW) Definition Letake of chemical (mg/kg-day) | | 5.56E-04
Value | | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake | Definition Intake of chemical (mg/kg-day) | | 5.56E-04 Value calculated | 4.44E-04 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Initake Cc | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) | | Value calculated see Table H-8 | 4.44E-04 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake | Definition Intake of chemical (mg/kg-day) | | 5.56E-04 Value calculated | 4.44E-04 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cc | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) | 3.54E+00 | Value calculated see Table H-8 see Table H-8 | 4.44E-04 Reference | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) | 3.54E+00 | Value calculated see Table H-8 see Table H-8 2.81E-05 4.00E-01 | Reference EPA, 1993 EPA, 1993 prof. judgement | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) | 3.54E+00 | Value calculated see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 | Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement | | HPAH TOTAL PAHS FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Initake Cc Cw IR - refined IR Dfc Dfw AUF - refined | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor | 3.54E+00 | Value calculated see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 | Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1993 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor | 3.54E+00 | Value calculated see Table H-8 see Table H-8 2.81E-05 2.81E-05 4.00E-01 1 1 | Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1993 EPA, 1993 | | HPAH TOTAL PAHS FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Initake Cc Cw IR - refined IR Dfc Dfw AUF - refined | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor | 3.54E+00 | Value calculated see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 | Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1993 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF BW - refined BW - refined | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) | 3.54E+00 | Value calculated see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 | Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1993 EPA, 1997 EPA, 1997 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF BW - refined BW - refined | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) | 3.54E+00 | Value calculated see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 | Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1993 EPA, 1997 EPA, 1997 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF BW - refined BW Chemical | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Worm concentration to flood (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) | 3.54E+00 | Value calculated see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 | Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1993 EPA, 1997 EPA, 1993 EPA, 1993 Intake - Refined | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR * refined IR Dfc Dfw AUF - refined AUF BW - refined BW | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) | 3.54E+00 | Value calculated see Table H-8 see Table H-8 2.81E-05 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 | EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1997 EPA, 1993 EPA, 1993 EPA, 1993 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF BW - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Accenaphthene | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 | 3.54E+00 Worm 1.93E-02 2.02E-03 1.77E-02 | Value calculated see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 Intake 1.35E-05 1.98E-06 1.24E-05 | 4.44E-04 Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1993 EPA, 1997 EPA, 1993 EPA, 1993 Intake - Refined 1.08E-05 1.59E-06 9.93E-06 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF BW - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthene Acenaphthylene | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 | 3.54E+00 Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 | Value calculated see Table H-8 see Table H-8 2.81E-05 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 | 4.44E-04 Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1997 EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 Intake - Refined 1.08E-05 1.59E-06 9.93E-06 1.15E-05 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthylene Anthracene | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 | Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 | Value calculated see Table H-8 see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 | EPA, 1993 1995 1 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined BW - refined BW - refined BW - refined BW - refined BW - refined AUF | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum
Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 | Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 | Value | ### Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1993 EPA, 1997 EPA, 1997 EPA, 1993 Intake - Refined 1.08E-05 1.59E-06 9.93E-06 1.15E-05 1.46E-04 2.99E-03 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthene Acenaphthylene Anthracene Arsenic Benzo(a)anthracene | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)* Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 | 3.54E+00 Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 | Value calculated see Table H-8 see Table H-8 2.81E-05 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 Intake 1.35E-05 1.98E-06 1.24E-05 1.43E-05 1.82E-04 3.74E-03 1.05E-04 | ### Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1993 EPA, 1997 EPA, 1993 EPA, 1993 Intake - Refined 1.08E-05 1.59E-06 9.93E-06 1.15E-05 1.46E-04 2.99E-03 8.37E-05 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthylene Acenaphthylene Arsenic Benzo(a)pyrene | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E-00 2.92E-01 1.80E-01 | Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 5.52E-01 | Value calculated see Table H-8 see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 Intake 1.35E-05 1.98E-06 1.24E-05 1.43E-05 1.43E-04 3.74E-03 | ### Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 Intake - Refined 1.08E-05 1.59E-06 9.93E-06 1.15E-05 1.46E-04 2.99E-03 8.37E-05 2.66E-04 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthene Acenaphthylene Anthracene Arsenic Benzo(a)anthracene | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)* Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 | 3.54E+00 Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 | Value calculated see Table H-8 see Table H-8 2.81E-05 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 Intake 1.35E-05 1.98E-06 1.24E-05 1.43E-05 1.82E-04 3.74E-03 1.05E-04 | ### Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1993 EPA, 1997 EPA, 1993 EPA, 1993 Intake - Refined 1.08E-05 1.59E-06 9.93E-06 1.15E-05 1.46E-04 2.99E-03 8.37E-05 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF BW - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthene Acenaphthylene Anthracene Arsenic Benzo(a) anthracene Benzo(a) pyrene Benzo(a) pyrene Benzo(a) pyrene Chysene Copper * | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Default Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 1.49E-01 1.49E-01 1.49E-01 2.21E+01 | Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 5.52E-01 7.23E-01 | Value | EPA, 1993 EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1993 EPA, 1997 EPA, 1997 EPA, 1993 EPA, 1993 Intake - Refined 1.08E-05 1.59E-06 9.93E-06 1.15E-05 1.46E-04 2.99E-03 8.37E-05 2.66E-04 4.05E-04 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthene Acenaphthylene Anthracene Arsenic Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Chysene Copper * Dibenz(a,h)anthracene | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 2.21E+01 2.21E+01 | Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 5.52E-01 7.23E-01 1.20E+00 6.64E+00 6.04E-02 | Value | ## Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1993 EPA, 1993 EPA, 1997 EPA, 1993 EPA, 1993 Intake - Refined 1.08E-05 1.59E-06 9.93E-06 1.15E-05 1.46E-04 2.99E-03 8.37E-05 2.66E-04 4.05E-04 5.16E-04 8.49E-03 8.92E-05 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF BW - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthene Acenaphthylene Anthracene Arsenic Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Copper * Dibenz(a,h)anthracene Endrin Aldehyde | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 2.21E-01 2.21E-01 3.32E-03 | 3.54E+00 Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 5.52E-01 7.23E-01 1.20E+00 6.64E+00 6.04E-02 3.32E-03 | Value calculated see Table H-8 see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 Intake 1.35E-05 1.98E-06 1.24E-05 1.43E-05 1.82E-04 3.74E-03 1.05E-04 6.45E-04 1.06E-02 1.12E-04 2.74E-06 | ## A.44E-04 Reference EPA, 1993 EP | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF BW - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthene Acenaphthylene Anthracene Arsenic Benzo(a) anthracene Benzo(a) pyrene Benzo(a) phyrene Chysene Copper * Dibenz(a,h)anthracene Endrin Aldehyde Endrin Ketone | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 1.49E-01 1.49E-01 2.21E+01 2.24TE-01 3.32E-03 5.50E-04 | 3.54E+00 Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 5.52E-01 7.23E-01 1.20E+00 6.04E-02 3.32E-03 5.50E-04 | Value calculated see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 Intake 1.35E-05 1.98E-06 1.24E-05 1.43E-05 1.82E-04 3.74E-03 1.05E-04 3.33E-04 6.45E-04 1.06E-02 1.12E-04 2.74E-06 4.54E-07 | ## A.44E-04 Reference | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF BW - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthene Acenaphthylene Anthracene Arsenic Benzo(a) anthracene Benzo(a) pyrene Benzo(a), h,i)perylene Chysene Copper * Dibenz(a,h)anthracene Endrin Aldehyde Endrin Ketone Fluoranthene | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 2.21E+01 2.21E+01 2.21E+01 2.47E-01 3.32E-03 5.50E-04 5.95E+00 | Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 5.52E-01 7.23E-01 1.20E+00 6.64E+00 6.04E-02 3.32E-03 5.50E-04 7.18E-01 | Value calculated see Table H-8 see Table H-8 2.81E-05 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 Intake 1.35E-05 1.98E-06 1.24E-05 1.43E-05 1.82E-04 3.74E-03 1.05E-04 3.33E-04 5.07E-04 6.45E-04 1.06E-02 1.12E-06 4.54E-07 2.32E-03 | ## A.44E-04 Reference EPA, 1993 EPA, 1993 prof. judgement prof. judgement EPA, 1993 EPA, 1993 EPA, 1993 EPA, 1993 Intake -
Refined 1.08E-05 1.59E-06 9.93E-06 1.15E-05 1.46E-04 2.99E-03 8.37E-05 2.66E-04 4.05E-04 5.16E-04 8.49E-03 8.92E-05 2.19E-06 3.63E-07 1.86E-03 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF BW - refined BW Chemical 2-Methylnaphthalene 4,4*-DDT Acenaphthene Acenaphthene Acenaphthene Arsenic Benzo(a)anthracene Benzo(a)nthracene Benzo(a)nthracene Copper * Dibenz(a,h)anthracene Endrin Aldehyde Endrin Ketone Fluorene | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 1.49E-01 1.49E-01 2.21E+01 2.24TE-01 3.32E-03 5.50E-04 | 3.54E+00 Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 5.52E-01 7.23E-01 1.20E+00 6.04E-02 3.32E-03 5.50E-04 | Value calculated see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 Intake 1.35E-05 1.98E-06 1.24E-05 1.43E-05 1.82E-04 3.74E-03 1.05E-04 3.33E-04 6.45E-04 1.06E-02 1.12E-04 2.74E-06 4.54E-07 | ## A.44E-04 Reference | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF BW - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthene Acenaphthylene Anthracene Arsenic Benzo(a)anthracene Benzo(a)pyrene Benzo(g),h,i)perylene Chrysene Copper * Dibenz(a,h)anthracene Endrin Aldehyde Endrin Retone Fluoranthene Fluoranthene Fluorene gamma-Chlordane | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 1.49E-01 3.32E-03 5.50E-04 5.95E+00 1.10E-02 | 3.54E+00 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 5.52E-01 7.23E-01 1.20E+00 6.04E-02 3.32E-03 5.50E-04 7.18E-01 1.77E-02 | Value calculated see Table H-8 see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 Intake 1.35E-05 1.98E-06 1.24E-05 1.43E-04 3.74E-03 1.05E-04 6.45E-04 1.06E-02 1.12E-04 2.74E-06 4.54E-07 2.32E-03 1.24E-05 | ### Reference EPA, 1993 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined BW Chemical 2-Methylnaphthalene 4,4*-DDT Acenaphthene Acenaphthylene Anthracene Arsenic Benzo(a) anthracene Benzo(a) anthracene Benzo(a) anthracene Copper * Dibenz(a,h) anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Lead | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 1.49E-01 3.32E-03 5.50E-04 5.96E+00 1.10E-02 1.01E-03 1.18E-01 9.50E-02 | 3.54E+00 Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 5.52E-01 7.23E-01 1.20E+00 6.04E-02 3.32E-03 5.50E-04 7.18E-01 1.77E-02 2.59E-03 5.10E-01 1.40E+00 | Value calculated see Table H-8 see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 Intake 1.35E-05 1.98E-06 1.24E-05 1.43E-05 1.82E-04 3.74E-03 1.05E-04 6.45E-04 1.06E-02 1.12E-04 2.74E-06 4.54E-07 2.32E-03 1.24E-05 1.62E-06 2.92E-04 7.27E-04 | ## Reference EPA, 1993 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)hjneylene Chysene Copper * Dibenz(a,h)anthracene Endrin Aldehyde Endrin Ketone Fluorene gamma-Chlordane Indend(1,2,3-cd)pyrene Lead Nickel | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Refined Area Use Factor Default Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.88E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 2.21E+01 2.47E-01 3.32E-03 5.50E-04 5.95E+00 1.10E-02 1.01E-03 1.18E-01 9.50E-02 9.77E-01 | Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 5.52E-01 7.23E-01 1.20E+00 6.64E+00 6.04E-02 3.32E-03 5.50E-04 7.18E-01 1.77E-02 2.59E-03 5.10E-01 1.40E+00 1.63E+01 | Value calculated see Table H-8 see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 1.55E-02 3.40E-02 Intake 1.35E-05 1.98E-06 1.24E-05 1.82E-04 3.74E-03 1.05E-04 3.33E-04 5.07E-04 6.45E-04 1.06E-02 1.12E-04 2.74E-06 4.54E-07 2.32E-03 1.24E-05 1.62E-06 2.92E-04 7.27E-04 8.40E-03 | ## Reference EPA, 1993 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF BW - refined BW Chemical 2-Methylnaphthalene 4,4*-DDT Acenaphthene Acenaphthylene Anthracene Arsenic Benzo(a)pyrene Benzo(a)pyrene Benzo(a)phyrene Chrysene Copper * Dibenz(a,h)anthracene Endrin Aldehyde Endrin Ketone Fluoranthene Fluorante Indeno(1,2,3-cd)pyrene Lead Nickel Phenanthrene | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 2.21E+01 2.27E-01 3.32E-03 5.50E-04 5.95E+00 1.10E-02 1.01E-03 1.18E-01 9.50E-02 9.77E-01 1.56E-01 | 3.54E+00 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 5.52E-01 7.23E-01 1.20E+00 6.04E-02 3.32E-03 5.50E-04 7.18E-01 1.77E-02 2.59E-03 5.10E-01 1.40E+00 1.63E+01 2.51E-01 | Value calculated see Table H-8 see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 Intake 1.35E-05 1.43E-05 1.43E-05 1.43E-04 3.74E-03 1.05E-04 4.50F-04 6.45E-04 2.74E-06 4.54E-07 2.32E-03 1.24E-05 1.62E-06 2.92E-04 8.40E-03 1.76E-04 | ### Reference EPA, 1993 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthylene Anthracene Arsenic Benzo(a) anthracene Benzo(a) pyrene Benzo(a) anthracene Copper * Dibenz(a,h) anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Lead Nickel Phenanthrene Pyrene | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Default Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 1.49E-01 3.32E-03 5.50E-04 5.95E+00 1.10E-02 1.01E-03 1.18E-01 9.50E-02 9.77E-01 1.56E-01 4.71E-01 | 3.54E+00 Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 5.52E-01 7.23E-01 1.20E+00 6.04E-02 3.32E-03 5.50E-04 7.18E-01 1.77E-02 2.59E-03 5.10E-01 1.40E+00 1.63E+01 2.51E-01 7.58E-01 | Value calculated see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 Intake 1.35E-05 1.98E-06 1.24E-05 1.43E-05 1.82E-04 3.74E-03 1.05E-04 3.33E-04 5.07E-04 6.45E-04 1.06E-02 1.12E-04 2.74E-06 4.54E-07 2.32E-03 1.24E-05 1.62E-06 2.92E-04 7.27E-04 8.40E-03 1.76E-04 5.31E-04 | ## Reference EPA, 1993 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined AUF BW - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthene Acenaphthylene Anthracene Arsenic Benzo(a) pyrene Benzo(a) phyene Benzo(a),h,i)perylene Chysene Copper * Dibenz(a,h)anthracene Endrin Aldehyde Endrin Aldehyde Endrin Ketone Fluoranthene Fluoranthene Fluorene gamma-Chlordane Indeno(1,2,3-cd)pyrene Lead Nickel Phenanthrene Pyrene Zinc | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Dietary fraction of worms (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 2.21E+01 2.47E-01 3.32E-03 5.50E-04 5.95E+00 1.10E-02 1.10E-02 1.11E-03 1.18E-01 9.50E-02 9.77E-01 1.56E-01 4.71E-01 2.69E+02 | Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 6.64E-02 5.52E-01 7.23E-01 1.20E+00 6.64E-02 3.32E-03 5.50E-04 7.18E-01 1.77E-02 2.59E-03 5.10E-01 1.40E+00 1.63E+01 2.51E-01 7.58E-01 1.35E+02 | Value calculated see Table H-8 see Table H-8 see Table H-8
2.81E-05 4.00E-01 6.00E-01 1 1 4.25E-02 3.40E-02 Intake 1.35E-05 1.98E-06 1.24E-05 1.42E-05 1.82E-04 3.74E-03 1.05E-04 3.33E-04 5.07E-04 6.45E-04 1.06E-02 1.12E-04 2.74E-06 4.54E-07 2.32E-03 1.24E-05 1.62E-06 2.92E-04 7.27E-04 8.40E-03 1.76E-04 5.31E-04 | ## Reference EPA, 1993 | | HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw IR - refined IR Dfc Dfw AUF - refined BW Chemical 2-Methylnaphthalene 4,4'-DDT Acenaphthylene Anthracene Arsenic Benzo(a) anthracene Benzo(a) pyrene Benzo(a) anthracene Copper * Dibenz(a,h) anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene Lead Nickel Phenanthrene Pyrene | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Maximum Ingestion rate of of food (kg/day)** Maximum Ingestion rate of of food (kg/day) Dietary fraction of crabs (unitless) Default Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 1.49E-01 3.32E-03 5.50E-04 5.95E+00 1.10E-02 1.01E-03 1.18E-01 9.50E-02 9.77E-01 1.56E-01 4.71E-01 | 3.54E+00 Worm 1.93E-02 2.02E-03 1.77E-02 2.04E-02 1.56E-01 4.33E+00 1.65E-02 5.52E-01 7.23E-01 1.20E+00 6.04E-02 3.32E-03 5.50E-04 7.18E-01 1.77E-02 2.59E-03 5.10E-01 1.40E+00 1.63E+01 2.51E-01 7.58E-01 | Value calculated see Table H-8 see Table H-8 2.81E-05 4.00E-01 6.00E-01 1 4.25E-02 3.40E-02 Intake 1.35E-05 1.98E-06 1.24E-05 1.43E-05 1.82E-04 3.74E-03 1.05E-04 3.33E-04 5.07E-04 6.45E-04 1.06E-02 1.12E-04 2.74E-06 4.54E-07 2.32E-03 1.24E-05 1.62E-06 2.92E-04 7.27E-04 8.40E-03 1.76E-04 5.31E-04 | ## Reference EPA, 1993 | ## TABLE F-4 INTAKE CALCULATIONS FOR SEDIMENT NORTH OF MARLIN Avian Carnivore (SANDPIPER) | ITAKE = Sediment Intake + Water Intake + Food Intake | | | |--|-----------------|---------------------------| | Chemical | Total
Intake | Total
Intake - Refined | | 2-Methylnaphthalene | 1.54E-05 | 1.23E-05 | | .4'-DDT | 2.38E-06 | 1.90E-06 | | Acenaphthene | 1.41E-05 | 1.13E-05 | | cenaphthylene | 1.63E-05 | 1.31E-05 | | Anthracene | 1.97E-04 | 1.58E-04 | | Arsenic | 4.49E-03 | 3.59E-03 | | Benzo(a)anthracene | 1.06E-04 | 8.51E-05 | | Benzo(a)pyrene | 3.87E-04 | 3.10E-04 | | Benzo(g,h,i)perylene | 5.77E-04 | 4.62E-04 | | Chrysene | 7.82E-04 | 6.25E-04 | | Copper * | 1.64E-02 | 1.31E-02 | | Dibenz(a,h)anthracene | 1.17E-04 | 9.39E-05 | | Endrin Aldehyde | 3.26E-06 | 2.61E-06 | | Endrin Ketone | 5.41E-07 | 4.33E-07 | | luoranthene | 2.39E-03 | 1.91E-03 | | luorene | 1.41E-05 | 1.13E-05 | | amma-Chlordane | 1.69E-06 | 1.35E-06 | | ndeno(1,2,3-cd)pyrene | 3.42E-04 | 2.73E-04 | | ead | 8.07E-03 | 6.46E-03 | | lickel * | 1.17E-02 | 9.36E-03 | | Phenanthrene | 2.01E-04 | 1.60E-04 | | Pyrene | 6.05E-04 | 4.84E-04 | | linc * | 1.97E-01 | 1.58E-01 | | .PAH | 6.10E-04 | 4.88E-04 | | IPAH . | 6.59E-03 | 5.28E-03 | | OTAL PAHs | 7.20E-03 | 5.76E-03 | NOTES: Shaded rows are the exposure parameters to be used in the Refinement Step 3a of the ERA process. Ingestion rate equations, inclusive of body weight, are the same as those used in pre-Refinement calculations. * Total Intake for the COPEC includes all three exposure pathways. **Ingestion rates are in dry weight. ## TABLE F-5 INTAKE CALCULATIONS FOR SEDIMENT NORTH OF MARLIN Avian Carnivore (GREEN HERON) | SEDIMENT INGESTION | | | | | |--|---|--|---|--| | NTAKE = (Sc * IR * AF * AUF) | / (BW) | | | | | Parameter | Definition | | Value | Reference | | ntake | Intake of chemical (mg/kg-day) | | calculated | | | Sc | Sediment concentration (mg/kg) | | see Table H-1 | | | R - refined | Mean Ingestion rate of sed (kg/day)** | | 1.88E-06 | EPA, 1993 | | R_ | Maximum Ingestion rate of sed (kg/day)** | | 1.88E-06 | EPA, 1993 | | AF | Chemical Bioavailability in sediment (unitles | ss) | 11 | EPA, 1997 | | AUF - refined | Refined Area Use Factor | | 1 | EPA, 1993 | | AUF | Default Area Use Factor | | 1 | EPA, 1997 | | BW - refined
BW | Mean Body weight (kg) | | 2.12E-01
1.77E-01 | EPA, 1993 | | DVV | Minimum Body weight (kg) | | 1.77E-01 | EPA, 1993 | | Chemical | | Sc | Intake | Intake - Refined | | 2-Methylnaphthalene | | 1.20E-02 | 1.27E-07 | 1.06E-07 | | 1.4'-DDT | | 2.52E-03 | 2.68E-08 | 2.23E-08 | | Acenaphthene | | 1.10E-02 | 1.17E-07 | 9.74E-08 | | Acenaphthylene | | 1.27E-02 | 1.35E-07 | 1.12E-07 | | Anthracene | | 9.70E-02 | 1.03E-06 | 8.59E-07 | | Arsenic | | 4.81E+00 | 5.11E-05 | 4.26E-05 | | Benzo(a)anthracene | | 1.14E-02 | 1.21E-07 | 1.01E-07 | | Benzo(a)pyrene | | 3.47E-01
| 3.68E-06 | 3.07E-06 | | Benzo(g,h,i)perylene | | 4.49E-01 | 4.77E-06 | 3.98E-06 | | Senzo(g,n,i)peryiene
Chrysene | | 4.49E-01
8.71E-01 | 4.77E-06
9.25E-06 | 3.98E-06
7.71E-06 | | | | 2.21E+01 | 2.35E-04 | 1.96E-04 | | Copper
Dibenz(a h)anthracene | | 3.75E-02 | 2.35E-04
3.98E-07 | 3.32E-07 | | Dibenz(a,h)anthracene | | | | | | Endrin Aldehyde | | 3.32E-03 | 3.52E-08 | 2.94E-08 | | Endrin Ketone
Fluoranthene | | 5.50E-04 | 5.84E-09 | 4.87E-09 | | | | 4.46E-01 | 4.74E-06 | 3.95E-06 | | Fluorene | | 1.10E-02 | 1.17E-07 | 9.74E-08 | | gamma-Chlordane | | 4.40E-04 | 4.67E-09 | 3.90E-09 | | ndeno(1,2,3-cd)pyrene | | 3.17E-01 | 3.37E-06 | 2.81E-06 | | Lead | | 4.68E+01 | 4.97E-04 | 4.14E-04 | | Nickel | | 1.81E+01 | 1.92E-04 | 1.60E-04 | | Phenanthrene | | 1.56E-01 | 1.66E-06 | 1.38E-06 | | Pyrene | | 4.71E-01 | 5.00E-06 | 4.17E-06 | | Zinc | | 2.36E+02 | | | | | | | 2.51E-03 | 2.09E-03 | | LPAH | | 3.00E-01 | 3.18E-06 | 2.65E-06 | | LPAH
HPAH | | 3.00E-01
3.24E+00 | 3.18E-06
3.44E-05 | 2.65E-06
2.87E-05 | | LPAH
HPAH
TOTAL PAHs
FOOD INGESTION | F)/(BW) + (Cw * IR * DFf * AUF) / (BW) | 3.00E-01 | 3.18E-06 | 2.65E-06 | | LPAH HPAH TOTAL PAHs FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF Parameter | Definition | 3.00E-01
3.24E+00 | 3.18E-06
3.44E-05
3.76E-05 | 2.65E-06
2.87E-05 | | LPAH HPAH TOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake | Definition
Intake of chemical (mg/kg-day) | 3.00E-01
3.24E+00 | 3.18E-06
3.44E-05
3.76E-05
Value
calculated | 2.65E-06
2.87E-05
3.13E-05 | | LPAH HPAH TOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) | 3.00E-01
3.24E+00 | 3.18E-06
3.44E-05
3.76E-05
Value
calculated
see Table H-8 | 2.65E-06
2.87E-05
3.13E-05 | | LPAH HPAH TOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cc | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) | 3.00E-01
3.24E+00 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 | 2.65E-06
2.87E-05
3.13E-05 | | LPAH HPAH TOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw R - refined | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** | 3.00E-01
3.24E+00 | 3.18E-06
3.44E-05
3.76E-05
Value
calculated
see Table H-8
see Table H-8
9.40E-05 | 2.65E-06
2.87E-05
3.13E-05
Reference | | LPAH HPAH TOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Cc Cw R - refined R | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** | 3.00E-01
3.24E+00 | 3.18E-06
3.44E-05
3.76E-05
Value
calculated
see Table H-8
see Table H-8
9.40E-05 | 2.65E-06
2.87E-05
3.13E-05
Reference | | LPAH HPAH TOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cc CW R - refined R Ofc | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Dietary fraction of crabs (unitless) | 3.00E-01
3.24E+00 | 3.18E-06
3.44E-05
3.76E-05
Value
calculated
see Table H-8
see Table H-8
9.40E-05
9.40E-05
2.50E-01 | 2.65E-06
2.87E-05
3.13E-05
Reference | | LPAH HPAH TOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw R - refined R Dfc Dff | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) | 3.00E-01
3.24E+00 | 3.18E-06
3.44E-05
3.76E-05
Value
calculated
see Table H-8
see Table H-8
9.40E-05
9.40E-05
2.50E-01
7.50E-01 | 2.65E-06
2.87E-05
3.13E-05
Reference
EPA, 1993
EPA, 1993
Kent, 1986
Kent, 1986 | | LPAH HPAH TOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Cc Cc Cw R - refined R Doff AUF - refined | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor | 3.00E-01
3.24E+00 | 3.18E-06
3.44E-05
3.76E-05
Value
calculated
see Table H-8
9.40E-05
9.40E-05
2.50E-01
7.50E-01 | 2.65E-06
2.87E-05
3.13E-05
Reference
EPA, 1993
EPA, 1993
Kent, 1986
Kent, 1986
EPA, 1993 | | LPAH HPAH TOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw R - refined R Dfc Dff AUF - refined AUF - refined AUF | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor | 3.00E-01
3.24E+00 | 3.18E-06
3.44E-05
3.76E-05
Value
calculated
see Table H-8
see Table H-8
9.40E-05
9.40E-05
2.50E-01
7.50E-01
1 | 2.65E-06
2.87E-05
3.13E-05
Reference
EPA, 1993
EPA, 1993
Kent, 1986
Kent, 1986
EPA, 1993
EPA, 1993
EPA, 1997 | | LPAH HPAH TOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter Intake Cc Cw R - refined R Dfc Dff AUF - refined AUF BW - refined | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor | 3.00E-01
3.24E+00 | 3.18E-06
3.44E-05
3.76E-05
Value
calculated
see Table H-8
9.40E-05
9.40E-05
2.50E-01
7.50E-01 | 2.65E-06
2.87E-05
3.13E-05
Reference
EPA, 1993
EPA, 1993
Kent, 1986
Kent, 1986
EPA, 1993 | | PAH HPAH FOTAL PAHS OOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Cc Cw R - refined R Off AUF - refined AUF SW - refined | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) | 3.00E-01
3.24E+00 | 3.18E-06
3.44E-05
3.76E-05
Value
calculated
see Table H-8
see Table H-8
9.40E-05
9.40E-05
2.50E-01
7.50E-01
1
1
2.12E-01 | 2.65E-06
2.87E-05
3.13E-05
3.13E-05
Reference
EPA, 1993
EPA, 1993
Kent, 1986
EPA, 1993
EPA, 1993
EPA, 1993 | | PAH HPAH TOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Cc Cw R - refined R Ofc Diff AUF - refined AUF - refined AUF - refined BW - refined BW - refined BW - refined | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) | 3.00E-01
3.24E+00 | 3.18E-06
3.44E-05
3.76E-05
Value
calculated
see Table H-8
see Table H-8
9.40E-05
9.40E-05
2.50E-01
7.50E-01
1
1
2.12E-01 | 2.65E-06
2.87E-05
3.13E-05
3.13E-05
Reference
EPA, 1993
EPA, 1993
Kent, 1986
EPA, 1993
EPA, 1993
EPA, 1993 | | PAH IPAH OTAL PAHS COOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Dc | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of food (kg/day)** Dietary fraction of rabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab | 3.00E-01
3.24E+00
3.54E+00 | 3.18E-06
3.44E-05
3.76E-05
Value calculated see Table H-8
see Table H-8
9.40E-05
2.50E-01
7.50E-01
1
1
2.12E-01
1.77E-01 | 2.65E-06
2.87E-05
3.13E-05
3.13E-05
Reference EPA, 1993
EPA, 1993
Kent, 1986
Kent, 1986
EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1993
EPA, 1993 | | PAH IPAH IPAH IPAH IPOTAL PAHS TOTAL PAHS TOTAL PAHS TOTAL PAHS Parameter IIIIAKE C C C C C M R - refined R R Ofc Off AUF - refined AUF SW - refined BW - refined BW Chemical Parameter IIIIA | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean ingestion rate of food (kg/day)** Ingestion rate of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 | 3.00E-01
3.24E+00
3.54E+00
Fish
5.58E-02
1.46E-03 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 1.50E-01 7.50E-01 1 1 2.12E-01 1.77E-01 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 | | PAH IPAH IPAH OTOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Dc Dc Dw R - refined R Ofc Dff AUF - refined AUF SW - refined BW Chemical Chemical Chentylnaphthalene A'-DDT Accenaphthene | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Wean Ingestion rate of food (kg/day)** Ingestion rate of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area
Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 | 3.00E-01
3.24E+00
3.54E+00
Fish
5.58E-02
1.46E-03
5.45E-03 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 2.50E-01 7.50E-01 1 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 EPA, 1993 Kent, 1986 Kent, 1986 EPA, 1993 EPA, 1997 EPA, 1993 EPA, 1993 Intake - Refined 1.99E-05 8.15E-07 3.03E-06 | | PAH IPAH IPAH OTOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Dc Dc Dw R - refined R Ofc Dff AUF - refined AUF SW - refined BW Chemical Chemical Chentylnaphthalene A'-DDT Accenaphthene | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean ingestion rate of food (kg/day)** Ingestion rate of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 | 3.00E-01
3.24E+00
3.54E+00
Fish
5.58E-02
1.46E-03 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 1.50E-01 7.50E-01 1 1 2.12E-01 1.77E-01 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 | | PAH IPAH OTAL PAHS COOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Dcc Dc Dc Dc Dd R - refined R R Dfc Dff MUF - refined | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Wean Ingestion rate of food (kg/day)** Ingestion rate of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 | 3.00E-01
3.24E+00
3.54E+00
Fish
5.58E-02
1.46E-03
5.45E-03 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 2.50E-01 7.50E-01 1 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 EPA, 1993 Kent, 1986 Kent, 1986 EPA, 1993 EPA, 1997 EPA, 1993 EPA, 1993 Intake - Refined 1.99E-05 8.15E-07 3.03E-06 | | PAH IPAH OTAL PAHS OOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Cc Cc NW R - refined R R Ofc Off AUF - refined AUF - refined SW - refined SW Chemical | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of food (kg/day)** Dietary fraction of rabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 | 3.00E-01
3.24E+00
3.54E+00
5.58E-02
1.46E-03
5.45E-03
6.29E-03 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 2.12E-01 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 | 2.65E-06 2.87E-05 3.13E-05 Reference EPA, 1993 EPA, 1993 Kent, 1986 Kent, 1986 EPA, 1993 | | PAH IPAH OTAL PAHs FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Dc Dc Dc DW R - refined R R Ofc MUF - refined MUF - refined SW Chemical | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 | 3.00E-01
3.24E+00
3.54E+00
3.54E+00
5.58E-02
1.46E-03
6.29E-03
8.15E-03 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 1.50E-01 7.50E-01 1 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-06 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 | | PAH IPAH IPAH IPAH IPAH IPAH IPAH IPAH I | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 | 3.00E-01
3.24E+00
3.54E+00
3.54E+00
5.58E-02
1.46E-03
5.45E-03
6.29E-03
8.15E-03
7.80E-01 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-05 9.49E-04 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 EPA, 1993 Kent, 1986 Kent, 1986 EPA, 1997 EPA, 1993 EPA, 1993 EPA, 1993 Intake - Refined 1.99E-05 8.15E-07 3.03E-06 3.49E-06 3.78E-05 7.92E-04 | | PAH IPAH OTAL PAHs OOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter Itake 2c | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 Fish 5.58E-02 1.46E-03 5.45E-03 7.80E-01 7.49E-03 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 1 1 2.12E-01 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.53E-05 9.49E-04 4.17E-05 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 EPA, 1993 EPA, 1986 Kent, 1986 Kent, 1986 EPA, 1993 1 | | PAH IPAH OTAL PAHs FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Dc Dc Dc DW R - refined R R Off MUF - refined MUF - refined BW Chemical | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E-00 2.92E-01 1.80E-01 | Fish 5.58E-02 1.46E-03 5.45E-03 6.29E-03 7.80E-01 7.49E-03 2.29E-01 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 1.50E-01 1 2.12E-01 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-05 9.49E-04 4.17E-05 1.15E-04 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 1995 199 | | PAH IPAH OTAL PAHS COOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Cc | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Wean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 | 3.00E-01
3.24E+00
3.54E+00
3.54E+00
5.58E-02
1.46E-03
5.45E-03
6.29E-03
8.15E-03
7.80E-01
7.49E-03
2.29E-01
2.96E-01 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-05 9.49E-04 4.17E-05 1.15E-04 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 199 | | PAH IPAH OTAL PAHs FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter nitake Dc Dc Dw R refined R R Ofc BW W- refined BW - refine | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of crabs (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1_20E-02 2_98E-03 1_10E-02 1_27E-02 3_17E-01 4_81E+00 2_92E-01 1_80E-01 4_49E-01 1_49E-01 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 Fish 5.58E-02 1.46E-03 5.45E-03 7.80E-01 7.49E-03 2.29E-01 2.96E-01 5.75E-01 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 2.12E-01 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.53E-05 9.49E-04 4.17E-05 1.15E-04 1.78E-04 2.49E-04 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 EPA, 1993 EPA, 1998 EPA, 1997 EPA, 1993 1995 199 | | PAH IPAH OTAL PAHs COOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Dc D | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 2.21E+01 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 Fish 5.58E-02 1.46E-03 5.45E-03 6.29E-03 8.15E-03 7.80E-01 7.49E-03 2.29E-01 5.75E-01 2.21E+01 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 1 2.12E-01 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-05 9.49E-04 1.78E-04 1.78E-04 1.18E-04 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 EPA, 1993 Kent, 1986 Kent, 1986 EPA, 1993 EPA, 1997 EPA, 1993 EPA, 1993 EPA, 1993 Intake - Refined 1.99E-05 8.15E-07 3.03E-06 3.49E-06 3.78E-05 7.92E-04 3.48E-05 9.59E-05 1.48E-04 2.07E-04 9.80E-03 | | PAH IPAH OTAL PAHS OOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Cc Cc Cc CM R - refined R R Ofc Off SW - refined | Definition Intake of chemical (mg/kg-day)
Crab concentration (mg/kg) Worm concentration (mg/kg) Wearn logestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 2.21E+01 2.21E+01 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 5.58E-02 1.46E-03 5.45E-03 6.29E-03 8.15E-03 7.80E-01 7.49E-03 2.29E-01 5.75E-01 2.21E+01 2.48E-02 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 1 2.12E-01 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-05 9.49E-04 4.17E-05 1.15E-04 1.78E-04 2.49E-04 1.18E-02 4.26E-05 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 199 | | PAH IPAH OTAL PAHs FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter nitake Dc Dc Dw R refined R R Ofc MUF - refined | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of crabs (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 2.21E-01 2.21E-01 3.32E-03 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 Fish 5.58E-02 1.46E-03 5.45E-03 6.29E-03 8.15E-03 7.80E-01 7.49E-03 2.29E-01 2.96E-01 5.75E-01 2.21E+01 2.48E-02 3.32E-03 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 1.12E-01 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-06 4.19E-04 1.18E-04 1.18E-04 1.18E-04 1.18E-04 1.18E-04 1.18E-05 1.16E-05 1.16E-06 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 EPA, 1993 EPA, 1996 Kent, 1986 Kent, 1986 EPA, 1997 EPA, 1993 1 | | PAH IPAH OTAL PAHS PA | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 2.21E+01 2.21E+01 2.27E-01 3.32E-03 5.50E-04 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 5.58E-02 1.46E-03 5.45E-03 6.29E-03 8.15E-03 7.80E-01 7.49E-03 2.29E-01 5.75E-01 2.21E+01 2.48E-02 3.32E-03 5.50E-04 2.94E-01 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-05 9.49E-04 1.17E-05 1.15E-04 2.49E-04 1.18E-02 4.26E-05 1.76E-06 2.92E-07 9.07E-04 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 199 | | PAH IPAH IPAH IPAH IPOTAL PAHS TOTAL | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.29E-01 1.80E-01 4.49E-01 1.49E-01 2.21E+01 2.21E+01 3.32E-03 5.50E-04 5.95E+00 1.10E-02 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 3.54E+00 Fish 5.58E-02 1.46E-03 5.45E-03 6.29E-03 8.15E-03 7.80E-01 7.49E-03 2.29E-01 2.96E-01 5.75E-01 2.21E+01 2.48E-02 3.32E-03 5.50E-04 2.94E-01 5.45E-03 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 9.40E-05 1.12E-01 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-05 9.49E-04 1.18E-04 1.18E-04 1.18E-04 2.49E-04 1.18E-02 4.26E-05 1.76E-06 2.92E-07 9.07E-04 3.63E-06 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 Reference EPA, 1993 EPA, 1993 EPA, 1996 Kent, 1986 Kent, 1986 EPA, 1997 EPA, 1997 EPA, 1993 1 | | PAH HPAH OTAL PAHs FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Dc Dc Dw R - refined R Off AUF - refined AUF SW Verifined SW Chemical | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.88E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 2.21E+01 2.21E+01 2.27E-01 3.32E-03 5.50E-04 5.95E+00 1.10E-02 1.01E-02 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 3.54E+00 5.58E-02 1.46E-03 5.45E-03 6.29E-03 8.15E-03 7.80E-01 7.49E-03 2.29E-01 2.96E-01 5.75E-01 2.21E+01 2.48E-02 3.32E-03 5.50E-04 2.94E-01 5.45E-03 6.60E-04 | 3.18E-06 3.44E-05 3.76E-05 Value caliculated see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-05 9.49E-04 4.17E-05 1.18E-04 2.49E-04 1.78E-04 2.49E-04 3.63E-06 3.97E-07 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 3.13E-05 Reference EPA, 1993 Intake - Refined 1.99E-05 8.15E-07 3.03E-06 3.49E-06 3.78E-05 7.92E-04 3.48E-05 9.59E-05 1.48E-04 2.07E-04 9.80E-03 3.56E-05 1.47E-06 2.44E-07 7.56E-04 3.03E-06 3.31E-07 | | PAH IPAH IPAH IPAH IPOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Dcc Dc Dc Dc Dc Dc Dc Dd R R Frefined R AUF - refined AUF - refined AUF - refined AUF - refined BW refin | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of rabs (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 2.21E+01 2.21E+01 2.27E-01 3.32E-03 5.50E-04 5.95E+00 1.10E-02 1.01E-03 1.18E-01 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 3.54E+00 5.58E-02 1.46E-03 5.45E-03 6.29E-03 8.15E-03 7.80E-01 7.49E-03 2.29E-01 2.96E-01 5.75E-01 2.21E+01 2.48E-02 3.32E-03 5.50E-04 2.94E-01 5.45E-03 6.60E-04 2.09E-01 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 1.2.12E-01 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.53E-05 9.49E-04 4.17E-05 1.15E-04 1.78E-04 2.49E-04 1.18E-02 4.26E-05 1.76E-06 2.92E-07 9.07E-04 3.63E-06 3.97E-07 9.88E-05 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 3.13E-05 Reference EPA, 1993 | | PAH HPAH HOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Cc Cc Cw R - refined R Ofc Off AUF - refined A | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E-400 2.92E-01 1.80E-01 4.49E-01 1.49E-01 2.41E-01 3.32E-03 5.50E-04 5.95E+00 1.10E-02 1.18E-01 1.10E-02 1.18E-01 9.50E-02 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 3.54E+00 Fish 5.58E-02 1.46E-03 5.45E-03 6.29E-03 8.15E-03 7.80E-01 7.49E-03 2.29E-01 2.96E-01 5.75E-01 2.21E+01 2.48E-02 3.32E-03 5.50E-04 2.94E-01 5.45E-03 6.60E-04 2.09E-01 9.36E-01 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 1 2.12E-01 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-05 9.49E-04 4.17E-05 1.15E-04 1.78E-04 2.49E-04 1.18E-02 4.26E-05 1.76E-06 2.92E-07 9.07E-04 3.63E-06 3.97E-07 9.89E-05 3.85E-06 3.97E-07 9.89E-05 3.85E-06 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 3.13E-05 Reference EPA, 1993 1995 8.15E-07 3.03E-06 3.78E-05 7.92E-04 3.48E-05 9.59E-05 1.48E-04 2.07E-04 9.80E-03 3.56E-05 1.47F-06 2.44E-07 7.56E-04 3.03E-06 3.31E-07 8.25E-05 3.21E-04 | | PAH HPAH HPAH HPAH HPAH HPAH HPAH HPAH | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 2.21E+01 2.27E-01 3.32E-03 5.50E-04 5.95E+00 1.10E-02 1.01E-03 1.18E-01 9.50E-02 9.77E-01 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 3.54E+00 5.58E-02 1.46E-03 5.45E-03 6.29E-03 8.15E-03 7.80E-01 7.49E-03 2.29E-01 2.96E-01 2.21E+01 2.48E-02 3.32E-03 5.50E-04 2.94E-01 5.45E-03 6.60E-04 2.09E-01 9.36E-01 9.36E-01 | 3.18E-06 3.44E-05 3.76E-05 Value caliculated see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-05 1.15E-04 1.78E-04 2.49E-04 1.18E-02 4.26E-05 1.76E-06 2.92E-07 9.07E-04 3.63E-06 3.97E-07 9.88E-05 3.85E-04 5.19E-04 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 3.13E-05 Reference EPA, 1993 | | PAH IPAH IPAH IPOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Dcc Dc | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of crabs (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 2.21E+01 2.21E+01 2.27E-01 3.32E-03 5.50E-04 5.95E-00 1.10E-02 1.118E-01 9.50E-02 9.77E-01 1.56E-01 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 3.54E+00 5.58E-02 1.46E-03 5.45E-03
6.29E-03 8.15E-03 7.80E-01 7.49E-03 2.29E-01 2.96E-01 5.75E-01 2.21E+01 2.48E-02 3.32E-03 6.50E-04 2.94E-01 5.45E-03 6.60E-04 2.96E-01 9.77E-01 7.72E-02 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 1.2.12E-01 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.53E-05 9.49E-04 4.17E-05 1.15E-04 1.78E-04 2.49E-04 1.18E-02 4.26E-05 1.76E-06 2.92E-07 9.07E-04 3.63E-06 3.97E-07 9.88E-05 3.85E-04 5.19E-04 5.19E-04 5.19E-04 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 3.13E-05 Reference EPA, 1993 | | PAH HPAH IOTAL PAHS FOOD INGESTION NTAKE = ((Cc * IR * Dfc * AUF Parameter ntake Cc Cw R - refined R Ofc Off AUF - refined | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of fish (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E-400 2.92E-01 1.80E-01 4.49E-01 1.49E-01 2.21E+01 2.24TE-01 3.32E-03 5.50E-04 5.95E+00 1.10E-02 1.10E-02 1.10E-02 1.10E-02 1.10E-02 1.10E-03 1.18E-01 9.50E-02 9.77E-01 1.56E-01 4.71E-01 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 3.54E+00 5.58E-02 1.46E-03 5.45E-03 6.29E-03 8.15E-03 7.80E-01 7.49E-03 2.29E-01 2.96E-01 5.75E-01 2.21E+01 2.48E-02 3.32E-03 5.50E-04 2.94E-01 5.45E-03 6.60E-04 2.09E-01 9.36E-01 9.77E-01 7.72E-02 3.11E-01 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-05 9.49E-04 1.78E-04 1.78E-04 1.78E-04 1.78E-04 1.78E-06 2.92E-07 9.07E-04 3.63E-06 3.97E-07 9.89E-05 3.85E-06 3.97E-07 9.89E-05 3.85E-06 3.97E-07 9.89E-05 3.85E-06 5.19E-04 5.19E-04 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 3.13E-05 Reference EPA, 1993 Intake - Refined 1.99E-05 8.15E-07 3.03E-06 3.78E-05 7.92E-04 3.48E-05 9.59E-05 1.48E-04 2.07E-04 9.80E-03 3.56E-05 1.47E-06 2.44E-07 7.56E-04 3.03E-06 3.31E-07 8.25E-05 3.21E-04 4.33E-04 4.29E-05 1.55E-04 | | PAH HPAH HPAH HPAH HPAH HPAH HPAH HPAH | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of rabs (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 2.21E+01 2.24TE+01 3.32E-03 5.50E-04 5.95E+00 1.10E-02 1.01E-03 1.18E-01 9.50E-02 9.77E-01 1.56E-01 4.71E-01 1.56E-01 4.77E-01 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 3.54E+00 3.54E+00 5.58E-02 1.46E-03 5.45E-03 6.29E-03 8.15E-03 7.80E-01 7.49E-03 2.29E-01 2.96E-01 2.21E+01 2.48E-02 3.32E-03 5.50E-04 2.94E-01 5.45E-03 6.60E-04 2.09E-01 9.76E-01 9.77E-01 7.72E-02 3.11E-01 2.69E+02 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-05 9.49E-04 4.17E-05 1.15E-04 1.18E-02 4.26E-05 1.76E-06 2.92E-07 9.07E-04 3.63E-06 3.97E-07 9.89E-05 3.85E-04 5.14E-05 1.16E-04 1.18E-02 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 3.13E-05 Reference EPA, 1993 | | PAH IPPAH IP | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of crabs (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 2.21E+01 2.21E+01 2.21E+01 2.25E-01 3.32E-03 5.50E-04 5.95E-00 1.10E-02 1.10E-02 1.10E-02 1.10E-02 1.10E-03 1.18E-01 9.50E-02 9.77E-01 1.56E-01 4.71E-01 2.69E+02 9.80E-01 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 3.54E+00 5.58E-02 1.46E-03 5.45E-03 6.29E-03 8.15E-03 7.80E-01 7.49E-03 2.29E-01 2.96E-01 5.75E-01 2.21E+01 2.48E-02 3.32E-03 6.60E-04 2.94E-01 5.45E-03 6.60E-04 2.94E-01 7.72E-02 3.11E-01 2.69E+02 1.48E-01 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 2.12E-01 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.53E-05 9.49E-04 1.18E-02 4.26E-05 1.76E-06 2.92E-07 9.07E-04 3.63E-06 3.97E-07 9.89E-05 3.85E-04 5.14E-05 1.86E-04 1.43E-01 1.89E-04 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 3.13E-05 3.13E-05 Reference EPA, 1993 | | LPAH
HPAH
TOTAL PAHs
FOOD INGESTION | Definition Intake of chemical (mg/kg-day) Crab concentration (mg/kg) Worm concentration (mg/kg) Mean Ingestion rate of food (kg/day)** Ingestion rate of food (kg/day)** Dietary fraction of crabs (unitless) Dietary fraction of rabs (unitless) Refined Area Use Factor Default Area Use Factor Mean Body weight (kg) Minimum Body weight (kg) Crab Crab 1.20E-02 2.98E-03 1.10E-02 1.27E-02 3.17E-01 4.81E+00 2.92E-01 1.80E-01 4.49E-01 1.49E-01 2.21E+01 2.24TE+01 3.32E-03 5.50E-04 5.95E+00 1.10E-02 1.01E-03 1.18E-01 9.50E-02 9.77E-01 1.56E-01 4.71E-01 1.56E-01 4.77E-01 | 3.00E-01 3.24E+00 3.54E+00 3.54E+00 3.54E+00 3.54E+00 5.58E-02 1.46E-03 5.45E-03 6.29E-03 8.15E-03 7.80E-01 7.49E-03 2.29E-01 2.96E-01 2.21E+01 2.48E-02 3.32E-03 5.50E-04 2.94E-01 5.45E-03 6.60E-04 2.09E-01 9.76E-01 9.77E-01 7.72E-02 3.11E-01 2.69E+02 | 3.18E-06 3.44E-05 3.76E-05 Value calculated see Table H-8 9.40E-05 9.40E-05 2.50E-01 7.50E-01 1 1.77E-01 Intake 2.38E-05 9.77E-07 3.63E-06 4.19E-06 4.53E-05 9.49E-04 4.17E-05 1.15E-04 1.18E-02 4.26E-05 1.76E-06 2.92E-07 9.07E-04 3.63E-06 3.97E-07 9.89E-05 3.85E-04 5.14E-05 1.16E-04 1.18E-02 | 2.65E-06 2.87E-05 3.13E-05 3.13E-05 3.13E-05 Reference EPA, 1993 | ## TABLE F-5 INTAKE CALCULATIONS FOR SEDIMENT NORTH OF MARLIN Avian Carnivore (GREEN HERON) TOTAL INTAKE INTAKE = Sediment Intake + Water Intake + Food Intake | Chemical | Total
Intake | Total
Intake - Refined | |-----------------------|-----------------|---------------------------| | 2-Methylnaphthalene | 2.39E-05 | 2.00E-05 | | 4.4'-DDT | 1.00E-06 | 8.37E-07 | | Acenaphthene | 3.74E-06 | 3.12E-06 | | Acenaphthylene | 4.32E-06 | 3.61E-06 | | Anthracene | 4.64E-05 | 3.87E-05 | | Arsenic | 1.00E-03 | 8.34E-04 | | Benzo(a)anthracene | 4.19E-05 | 3.49E-05 | | Benzo(a)pyrene | 1.19E-04 | 9.90E-05 | | Benzo(g,h,i)perylene | 1.82E-04 | 1.52E-04 | | Chrysene | 2.58E-04 | 2.15E-04 | | Copper * | 1.33E-02 | 1.11E-02 | | Dibenz(a,h)anthracene | 4.30E-05 | 3.59E-05 | | Endrin Aldehyde | 1.80E-06 | 1.50E-06 | | Endrin Ketone | 2.98E-07 | 2.48E-07 | | Fluoranthene | 9.12E-04 | 7.60E-04 | | Fluorene | 3.74E-06 | 3.12E-06 | | gamma-Chlordane | 4.02E-07 | 3.35E-07 | | ndeno(1,2,3-cd)pyrene | 1.02E-04 | 8.53E-05 | | Lead | 8.82E-04 | 7.36E-04 | | Nickel * | 9.71E-04 | 8.10E-04 | | Phenanthrene | 5.31E-05 | 4.43E-05 | | Pyrene | 1.91E-04 | 1.60E-04 | | Zinc * | 1.48E-01 | 1.23E-01 | | LPAH | 1.92E-04 | 1.60E-04 | | HPAH | 2.29E-03 | 1.91E-03 | | TOTAL PAHs | 2.50E-03 | 2.09E-03 | NOTES: Shaded rows are the exposure parameters to be used in the Refinement Step 3a of the ERA process. Ingestion rate equations, inclusive of body weight, are the same as those used in pre-Refinement calculations. * Total Intake for the COPEC includes all three exposure pathways. **Ingestion rates are in dry weight. ## TABLE F-6 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SEDIMENT NORTH OF MARLIN Avian Carnivore (SANDPIPER) Ecological Hazard Quotient = Total Intake / TRV Parameter Definition Default Total Intake Intake of COPEC (mg/kg-day) see Intake TRV Toxicity Reference Value (mg/kg) see Table H-2 | | Total | Total Intake - | TRV | | EHQ - | | |------------------------|----------|----------------|-----------|------------|----------|--| | Chemical | Intake | Refined | Sandpiper | EHQ | Refined | | | 2-Methylnaphthalene | 1.54E-05 | 1.23E-05 | | | | | | 4,4'-DDT | 2.38E-06 | 1.90E-06 | 2.27E-01 | 1.05E-05 | 8.38E-06 | | | Acenaphthene | 1.41E-05 | 1.13E-05 | | | | | | Acenaphthylene | 1.63E-05 | 1.31E-05 | | | | | | Anthracene | 1.97E-04 | 1.58E-04 | | | | | | Arsenic | 4.49E-03 | 3.59E-03 | | | | | | Benzo(a)anthracene | 1.06E-04 | 8.51E-05 | | | | | | Benzo(a)pyrene | 3.87E-04 | 3.10E-04 | | | | | | Benzo(g,h,i)perylene | 5.77E-04 | 4.62E-04 | | | | | | Chrysene | 7.82E-04 | 6.25E-04 | | | | | | Copper | 1.64E-02 | 1.31E-02 | 4.05E+00 | 4.05E-03 | 3.24E-03 | | | Dibenz(a,h)anthracene | 1.17E-04 | 9.39E-05 | | | | | | Endrin Aldehyde | 3.26E-06 | 2.61E-06 | 1.00E-02 | 3.26E-04 | 2.61E-04 | | | Endrin Ketone | 5.41E-07 | 4.33E-07 | 1.00E-02 | < 5.41E-05 | 4.33E-05 | | | Fluoranthene | 2.39E-03 | 1.91E-03 | | | | | | Fluorene | 1.41E-05 | 1.13E-05 | | | | | | gamma-Chlordane | 1.69E-06 | 1.35E-06 | 2.14E+00 | < 7.88E-07 | 6.30E-07 | | | Indeno(1,2,3-cd)pyrene | 3.42E-04 | 2.73E-04 | | | | | | Lead | 8.07E-03 | 6.46E-03 | 1.63E+00 | 4.95E-03 | 3.96E-03 | | | Nickel | 1.17E-02 | 9.36E-03 | 6.71E+00 | 1.74E-03 | 1.39E-03 | | | Phenanthrene | 2.01E-04 | 1.60E-04 | | | | | | Pyrene | 6.05E-04 | 4.84E-04 | | | | | | Zinc | 1.97E-01 | 1.58E-01 | 6.61E+01 | 2.98E-03 | 2.39E-03 | | | LPAH | 6.10E-04 | 4.88E-04 | | | | | | HPAH | 6.59E-03 | 5.28E-03 | | | | | | TOTAL PAHs | 7.20E-03 | 5.76E-03 | | | | | ## TABLE F-7 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SEDIMENT NORTH OF MARLIN Avian Carnivore (GREEN HERON) Ecological Hazard Quotient = Total Intake / TRV ParameterDefinitionDefaultTotal IntakeIntake of COPEC (mg/kg-day)see IntakeTRVToxicity Reference Value (mg/kg)see Table H-2 | | TRV
Total | | | | | | | | |------------------------|--------------|----------|-------------|----------|----------|--|--|--| | | Total | Intake - | | | EHQ - | | | | | Chemical | Intake | Refined | Green Heron | EHQ | Refined | | | | | 2-Methylnaphthalene | 2.39E-05 | 2.00E-05 | | | | | | | | 4,4'-DDT | 1.00E-06 | 8.37E-07 | 2.27E-01 | 4.42E-06 |
3.69E-06 | | | | | Acenaphthene | 3.74E-06 | 3.12E-06 | | | | | | | | Acenaphthylene | 4.32E-06 | 3.61E-06 | | | | | | | | Anthracene | 4.64E-05 | 3.87E-05 | | | | | | | | Arsenic | 1.00E-03 | 8.34E-04 | | | | | | | | Benzo(a)anthracene | 4.19E-05 | 3.49E-05 | | | | | | | | Benzo(a)pyrene | 1.19E-04 | 9.90E-05 | | | | | | | | Benzo(g,h,i)perylene | 1.82E-04 | 1.52E-04 | | | | | | | | Chrysene | 2.58E-04 | 2.15E-04 | | | | | | | | Copper | 1.33E-02 | 1.11E-02 | 4.05E+00 | 3.28E-03 | 2.74E-03 | | | | | Dibenz(a,h)anthracene | 4.30E-05 | 3.59E-05 | | | | | | | | Endrin Aldehyde | 1.80E-06 | 1.50E-06 | 1.00E-02 | 1.80E-04 | 1.50E-04 | | | | | Endrin Ketone | 2.98E-07 | 2.48E-07 | 1.00E-02 < | 2.98E-05 | 2.48E-05 | | | | | Fluoranthene | 9.12E-04 | 7.60E-04 | | | | | | | | Fluorene | 3.74E-06 | 3.12E-06 | | | | | | | | gamma-Chlordane | 4.02E-07 | 3.35E-07 | 2.14E+00 < | 1.88E-07 | 1.57E-07 | | | | | Indeno(1,2,3-cd)pyrene | 1.02E-04 | 8.53E-05 | | | | | | | | Lead | 8.82E-04 | 7.36E-04 | 1.63E+00 | 5.41E-04 | 4.51E-04 | | | | | Nickel | 9.71E-04 | 8.10E-04 | 6.71E+00 | 1.45E-04 | 1.21E-04 | | | | | Phenanthrene | 5.31E-05 | 4.43E-05 | | | | | | | | Pyrene | 1.91E-04 | 1.60E-04 | | | | | | | | Zinc | 1.48E-01 | 1.23E-01 | 6.61E+01 | 2.24E-03 | 1.87E-03 | | | | | LPAH | 1.92E-04 | 1.60E-04 | | | | | | | | HPAH | 2.29E-03 | 1.91E-03 | | | | | | | | TOTAL PAHs | 2.50E-03 | 2.09E-03 | | | | | | | ## TABLE F-8 CONCENTRATION OF CHEMICAL IN FOOD ITEM (mg/kg) Cfood = Csed x BSAF or Cwtr x BCF where: Cfood = Chemical Concentration in food (mg/kg dry) Csed = Chemical Concentration in sediment (mg/kg dry) Cwtr = Chemical Concentration in water (mg/L) BSAF Biota to Sediment Accumulation Factor (unitless) BCF = Bioconcentration Factor (unitless) | Compound | Csed | Sediment to Worm | Worm | Reference | Sediment to Crab | Crab Reference | e Sediment to Fish | Fish Reference | |------------------------|----------|------------------|---------------|--------------|------------------|-----------------------|--------------------|-------------------------------------| | • | (mg/kg) | BSAF | Concentration | | BSAF | Concentration | BSAF | Concentration | | 2-Methylnaphthalene | 1.20E-02 | 1.61E+00 | 1.93E-02 | P. EPA, 1999 | 1.00E+00 | 1.20E-02 ** | 4.65E+00 | 5.58E-02 Brunson et al. (1998) | | 4,4'-DDT | 2.52E-03 | 8.00E-01 | 2.02E-03 | BSAF DB | * | 2.98E-03 * | 5.80E-01 | 1.46E-03 WSDOH, 1995 | | Acenaphthene | 1.10E-02 | 1.61E+00 | 1.77E-02 | P. EPA, 1999 | 1.00E+00 | 1.10E-02 ** | 4.95E-01 | 5.45E-03 WSDOH, 1995 | | Acenaphthylene | 1.27E-02 | 1.61E+00 | 2.04E-02 | EPA, 1999 | 1.00E+00 | 1.27E-02 ** | 4.95E-01 | 6.29E-03 WSDOH, 1995 | | Anthracene | 9.70E-02 | 1.61E+00 | 1.56E-01 | EPA, 1999 | 3.27E+00 | 3.17E-01 BSAF DB | 8.40E-02 | 8.15E-03 WSDOH, 1995 | | Arsenic | 4.81E+00 | 9.00E-01 | 4.33E+00 | EPA, 1999 | 1.00E+00 | 4.81E+00 ** | 1.62E-01 | 7.80E-01 EPA, 2000 | | Benzo(a)anthracene | 1.14E-02 | 1.45E+00 | 1.65E-02 | EPA, 1999 | * | 2.92E-01 * | 6.60E-01 | 7.49E-03 WSDOH, 1995 | | Benzo(a)pyrene | 3.47E-01 | 1.59E+00 | 5.52E-01 | EPA, 1999 | * | 1.80E-01 * | 6.60E-01 | 2.29E-01 WSDOH, 1995 | | Benzo(g,h,i)perylene | 4.49E-01 | 1.61E+00 | 7.23E-01 | EPA, 1999 | 1.00E+00 | 4.49E-01 ** | 6.60E-01 | 2.96E-01 WSDOH, 1995 | | Chrysene | 8.71E-01 | 1.38E+00 | 1.20E+00 | EPA, 1999 | * | 1.49E-01 * | 6.60E-01 | 5.75E-01 WSDOH, 1995 | | Copper | 2.21E+01 | 3.00E-01 | 6.64E+00 | EPA, 1999 | 1.00E+00 | 2.21E+01 ** | 1.00E+00 | 2.21E+01 Max value from Calcasieu I | | Dibenz(a,h)anthracene | 3.75E-02 | 1.61E+00 | 6.04E-02 | P. EPA, 1999 | * | 2.47E-01 * | 6.60E-01 | 2.48E-02 WSDOH, 1995 | | Endrin Aldehyde | 3.32E-03 | 1.00E+00 | 3.32E-03 | 3 ** | 1.00E+00 | 3.32E-03 ** | 1.00E+00 | 3.32E-03 ** | | Endrin Ketone | 5.50E-04 | 1.00E+00 | 5.50E-04 | ** | 1.00E+00 | 5.50E-04 ** | 1.00E+00 | 5.50E-04 ** | | Fluoranthene | 4.46E-01 | 1.61E+00 | 7.18E-01 | EPA, 1999 | 1.33E+01 | 5.95E+00 BSAF DB | 6.60E-01 | 2.94E-01 WSDOH, 1995 | | Fluorene | 1.10E-02 | 1.61E+00 | 1.77E-02 | EPA, 1999 | 1.00E+00 | 1.10E-02 ** | 4.95E-01 | 5.45E-03 WSDOH, 1995 | | gamma-Chlordane | 4.40E-04 | 5.88E+00 | 2.59E-03 | BSAF DB | 2.30E+00 | 1.01E-03 BSAF DB | 1.50E+00 | 6.60E-04 BSAF DB | | Indeno(1,2,3-cd)pyrene | 3.17E-01 | 1.61E+00 | 5.10E-01 | EPA, 1999 | * | 1.18E-01 * | 6.60E-01 | 2.09E-01 WSDOH, 1995 | | Lead | 4.68E+01 | 3.00E-02 | 1.40E+00 | EPA, 1999 | * | 9.50E-02 * | 2.00E-02 | 9.36E-01 Max value from Calcasieu I | | Nickel | 1.81E+01 | 9.00E-01 | 1.63E+01 | EPA, 1999 | 5.40E-02 | 9.77E-01 Max value fr | 5.40E-02 | 9.77E-01 Max value from Calcasieu I | | Phenanthrene | 1.56E-01 | 1.61E+00 | 2.51E-01 | EPA, 1999 | 1.00E+00 | 1.56E-01 ** | 4.95E-01 | 7.72E-02 WSDOH, 1995 | | Pyrene | 4.71E-01 | 1.61E+00 | 7.58E-01 | EPA, 1999 | 1.00E+00 | 4.71E-01 ** | 6.60E-01 | 3.11E-01 WSDOH, 1995 | | Zinc | 2.36E+02 | 5.70E-01 | 1.35E+02 | P. EPA, 1999 | 1.14E+00 | 2.69E+02 Max value fr | 1.14E+00 | 2.69E+02 Max value from Calcasieu I | | LPAH | 3.00E-01 | 1.61E+00 | 4.83E-01 | EPA, 1999 | 3.27E+00 | 9.80E-01 max PAH | 4.95E-01 | 1.48E-01 WSDOH, 1995 | | HPAH | 3.24E+00 | 1.61E+00 | 5.22E+00 | EPA, 1999 | 3.27E+00 | 1.06E+01 max PAH | 6.60E-01 | 2.14E+00 WSDOH, 1995 | | TOTAL PAHs | 3.54E+00 | 1.61E+00 | 5.70E+00 | EPA, 1999 | 3.27E+00 | 1.16E+01 max PAH | 6.60E-01 | 2.34E+00 WSDOH, 1995 | ### Notes ^{*} These compounds were analyzed but not detected in any blue crab samples collected at the Site; so value is one-half of maximum detection limit. ^{*+} These compounds were not included in crab tissue analysis per the approved Sampling & Analysis Plan. ^{**} If no BAF or BCF was available in the literature, a default value of 1.0 was used. ^{***} COPEC was measured in crab tissue and surface water, but not in sediment. ## TABLE F-9 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR SEDIMENT NORTH OF MARLIN POLYCHAETES -- MIDPOINT BETWEEN ERL AND ERM COMPARISON | Ecological Hazard | Quotient = Sc/TRV | | |-------------------|----------------------------------|---------------| | | | | | | | | | Parameter | Definition | Default | | Sc | Sediment Concentration (mg/kg) | see below | | | , G G, | see below | | TRV | Toxicity Reference Value (mg/kg) | see Table H-2 | | | | | | | Exposure Point Concentra | tion* TRV | Maximum | |------------------------|--------------------------|-------------|----------| | Chemical | (Sc) | polychaetes | EHQ⁺ | | 2-Methylnaphthalene | 4.30E-01 | 3.70E-01 | 1.16E+00 | | 4,4'-DDT | 9.22E-03 | 3.20E-02 | 2.88E-01 | | Acenaphthene | 1.33E-01 | 2.58E-01 | 5.16E-01 | | Acenaphthylene | 5.45E-01 | 3.42E-01 | 1.59E+00 | | Anthracene | 3.34E-01 | 5.93E-01 | 5.64E-01 | | Arsenic | 1.28E+01 | 3.91E+01 | 3.27E-01 | | Benzo(a)anthracene | 9.93E-01 | 9.31E-01 | 1.07E+00 | | Benzo(a)pyrene | 1.30E+00 | 1.02E+00 | 1.28E+00 | | Benzo(g,h,i)perylene | 1.94E+00 | 6.70E-01 | 2.90E+00 | | Chrysene | 4.05E+00 | 1.59E+00 | 2.54E+00 | | Copper | 4.90E+01 | 1.52E+02 | 3.22E-01 | | Dibenz(a,h)anthracene | 2.91E+00 | 1.62E-01 | 1.80E+01 | | Endrin Aldehyde | 1.00E-02 | 3.25E-02 | 3.07E-01 | | Endrin Ketone | 1.30E-02 | 3.25E-02 | 4.00E-01 | | Fluoranthene | 2.17E+00 | 2.85E+00 | 7.61E-01 | | Fluorene | 1.39E-01 | 2.80E-01 | 4.97E-01 | | gamma-Chlordane | 3.60E-03 | 3.70E-03 | 9.74E-01 | | Indeno(1,2,3-cd)pyrene | 1.94E+00 | 6.00E-01 | 3.23E+00 | | Lead | 2.37E+01 | 1.32E+02 | 1.79E-01 | | Nickel | 2.77E+01 | 3.63E+01 | 7.64E-01 | | Phenanthrene | 1.30E+00 | 8.70E-01 | 1.49E+00 | | Pyrene | 1.64E+00 | 1.63E+00 | 1.00E+00 | | Zinc | 9.03E+02 | 2.80E+02 | 3.23E+00 | | LPAH | 1.15E+00 | 1.86E+00 | 6.18E-01 | | HPAH | 1.39E+01 | 5.65E+00 | 2.47E+00 | | TOTAL PAHs | 1.51E+01 | 2.44E+01 | 6.18E-01 | Notes: *EPC for benthic receptors is maximum measured concentration. ^{*}Shading indicates HQ > 1. # TABLE G-1 EXPOSURE POINT CONCENTATION (mg/kg) POND SEDIMENT | Parameter | | Exposure Point Concentration | Statistic Used | |-----------|---|------------------------------|----------------| | SEDIMENT | | | | | 4,4'-DDT | < | 1.10E-02 | median | | Zinc | | 9.61E+02 | 95% Chebyshev | ### TABLE G-2 TOXICITY REFERENCE VALUES | Parameter | Polychaetes
(mg/kg) | Ref. | Comments | Polychaetes
(mg/kg) | Ref. | | Avian Carnivore
(Sandpiper)
(mg/kgBW-day) | | Comments | Avian Carnivore
(Green heron)
(mg/kgBW-day) | | Comments | |-----------|------------------------|--------|----------|------------------------|--------|-----|---|------------|-------------------------|---|------------|-----------------------------| | | | | | | | | | | Highest bounded NOAEL | | | Highest bounded NOAEL | | | | | | | | | | | for growth and | | | for growth and reproduction | | | | | | | | | | | reproduction lower than | | | lower than the lowest | | | | | | | | | | | the lowest bounded | | | bounded LOAEL for | | | | | | | | | | | LOAEL for reproduction, | | | reproduction, growth, and | | 4,4'-DDT | 1.19E-03 | SQUIRT | ERL | 6.29E-02 | SQUIRT | ERM | 2.27E-01 | EPA, 2007a | growth, and survival | 2.27E-01 | EPA, 2007a | survival | | | | | | | | | | | Geometric mean of | | | Geometric mean of | | | | | | | | | | | NOAEL values within the | | | NOAEL values within the | | | | | | | | | | | reproductive and growth | | | reproductive and growth | | Zinc | 1.50E+02 | SQUIRT | ERL | 4.10E+02 | SQUIRT | ERM | 6.61E+01 | EPA, 2007e | effect groups | 6.61E+01 | EPA, 2007e | effect groups | | | | | | | | | | | | | | | Notes: ERL -- Effects Range-Low AET -- Apparent Effects Threshold EPA, 2007a -- DDT EPA, 2007e -- Zinc # TABLE G-3 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR POND SEDIMENT POLYCHAETES | Ecological Hazard | Quotient = Sc/TRV | | | |------------------------|--|-------------|---------------------------------------| | Parameter
Sc
TRV | Definition Sediment Concentration (mg/kg) Toxicity Reference Value (mg/kg) | | Default
see
below
see Table I-2 | | Chemical | Exposure Point Concentrat | tion* TRV | Maximum | | | (Sc) | polychaetes | EHQ⁺ | | 4,4'-DDT | 1.57E-03 | 1.19E-03 | 1.32E+00 | | Zinc | 9.99E+02 | 1.50E+02 | 6.66E+00 | Notes: *EPC for benthic receptors is maximum measured concentration. ^{*}Shading indicates HQ > 1. ## TABLE G-4 INTAKE CALCULATIONS FOR POND SEDIMENT Avian Carnivore (SANDPIPER) | SEDIMENT INGESTION | | | | | |--|--|----------|-----------------|---------------------------| | INTAKE = (Sc * IR * AF * Al | JF) / (BW) | | | | | Parameter | Definition | | Value | Reference | | Intake | Intake of chemical (mg/kg-day) | | calculated | | | Sc | Sediment concentration (mg/kg) | | see Table I-1 | | | IR - refined | Mean Ingestion rate of sed (kg/day)*** | | 5.34E-06 | EPA, 1993 | | IR | Maximum Ingestion rate of sed (kg/day)*** | | 5.34E-06 | EPA, 1993 | | AF | Chemical Bioavailability in sediment (unitless | :) | 1 | EPA, 1997 | | AUF - refined | Refined Area Use Factor | , | 1 | EPA, 1993 | | AUF | Default Area Use Factor | | 1 | EPA, 1997 | | BW - refined | Mean Body weight (kg) | | 4.25E-02 | EPA, 1993 | | BW | Minimum Body weight (kg) | | 3.40E-02 | EPA, 1993 | | Chemical | | Sc | Intake | Intake - Refined | | Chemical | | 30 | IIIIake | Ilitake - Kellileu | | 4,4'-DDT | | 1.10E-02 | 1.73E-06 | 1.38E-06 | | | | | | | | Zinc | | 9.61E+02 | 1.51E-01 | 1.21E-01 | | FOOD INGESTION INTAKE = ((Cc * IR * Dfc * / | AUF)/(BW) + (Cw * IR * DFw * AUF) / (BW) | | | | | ** | | | | ъ. | | Parameter | Definition | | Value | Reference | | Intake | Intake of chemical (mg/kg-day) | | calculated | | | Cc | Crab concentration (mg/kg) | | see Table I-8 | | | Cw | Worm concentration (mg/kg) | | see Table I-8 | | | IR - refined | Mean Ingestion rate of food (kg/day)*** | | 2.81E-05 | EPA, 1993 | | IR | Maximum Ingestion rate of of food (kg/day)** | * | 2.81E-05 | EPA, 1993 | | Dfc | Dietary fraction of crabs (unitless) | | 4.00E-01 | prof. judgement | | Dfw | Dietary fraction of worms (unitless) | | 6.00E-01 | prof. judgement | | AUF - refined | Refined Area Use Factor | | 1 | EPA, 1993 | | AUF | Default Area Use Factor | | 1 | EPA, 1997 | | BW - refined | Mean Body weight (kg) | | 4.25E-02 | EPA, 1993 | | BW | Minimum Body weight (kg) | | 3.40E-02 | EPA, 1993 | | | | | | | | Chemical | Crab | Worm | Intake | Intake - Refined | | | | | | | | 4,4'-DDT | 2.98E-03 | 8.80E-03 | 5.34E-06 | 4.28E-06 | | Zinc | 1.10E+03 | 5.48E+02 | 6.33E-01 | 5.07E-01 | | TOTAL INTAKE | | | | | | INTAKE = Sediment Intake | +Water Intake + Food Intake | | | | | Chemical | | | Total
Intake | Total
Intake - Refined | | 4.41.DDT | | | 7.075.00 | F 00F 00 | | 4,4'-DDT | | | 7.07E-06 | 5.66E-06 | | Zinc * | | | 9.16E-01 | 8.59E-01 | #### NOTES: Shaded rows are the exposure parameters to be used in the Refinement Step 3a of the ERA process. Ingestion rate equations, inclusive of body weight, are the same as those used in pre-Refinement calculations. - are the same as those used in pre-Keimernent Calculations. * Total Intake for the COPEC includes all three exposure pathways. ** COPEC was measured in crab tissue and water, but not in sediment. *** Expressed in dry weight. ### TABLE G-5 INTAKE CALCULATIONS FOR POND SEDIMENT Avian Carnivore (GREEN HERON) | NTAKE = (Sc * IR * AF * AUF) / (BW) | SEDIMENT INGESTION | | | | | |--|----------------------------|--|----------|---------------|------------------| | Parameter | | | | | | | Intake | INTAKE = (Sc * IR * AF * A | .UF) / (BW) | | | | | Se | Parameter | Definition | | Value | Reference | | R. refined Mean Ingestion rate of sed (kg/day)** 1.88E-06 EPA, 1993 R Maximum Ingestion rate of sed (kg/day)** 1.88E-06 EPA, 1993 AF Chemical Bioavailability in sediment (unitless) 1 EPA, 1997 AUF - refined Refined Area Use Factor 1 EPA, 1997 AUF - refined Mean Body weight (kg) 2.12E-01 EPA, 1993 EP | | Intake of chemical (mg/kg-day) | | calculated | | | R | Sc | Sediment concentration (mg/kg) | | see Table I-1 | | | R | IR - refined | Mean Ingestion rate of sed (kg/day)*** | | 1.88E-06 | EPA, 1993 | | AF Chemical Bioavailability in sediment (unitless) 1 EPA, 1997 AUF - refined Refined Area Use Factor 1 EPA, 1993 AUF - refined Mean Body weight (kg) 2,12E-01 EPA, 1993 BW - refined Mean Body weight (kg) 1,77E-01 EPA, 1993 BW Minimum Body weight (kg) 1,77E-01 EPA, 1993 BW - Refined Section 1,10E-02 1,17E-07 9,74E-08 ALF-DDT 1,10E-02 1,17E-07 9,74E-08 ALF-DDT 1,0EE-02 1,0EE-02 8,51E-03 FOOD INGESTION INTAKE = ('Cc * IR * Dfc * AUF)/(BW) + ('Cw * IR * DFw * AUF) / (BW) Parameter Definition | | | | 1.88E-06 | | | AUF - refined Refined Area Use Factor 1 EPA, 1993 AUF - Refined Mean Body weight (kg) 2.12E-01 EPA, 1993 BW - refined Mean Body weight (kg) 1.77E-01 EPA, 1993 BW - Refined Mean Body weight (kg) 1.77E-01 EPA, 1993 BW - Refined Refi | AF | Chemical Bioavailability in sediment (unitless | s) | 1 | EPA, 1997 | | BW - refined Mean Body weight (kg) 2.12E-01 EPA, 1993 | AUF - refined | | , | 1 | EPA, 1993 | | Sc | AUF | Default Area Use Factor | | 1 | | | Chemical Sc | | | | 2.12E-01 | | | 4,4-DDT | BW | Minimum Body weight (kg) | | 1.77E-01 | EPA, 1993 | | A4-DDT | | | | | | | FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF)/(BW) + (Cw * IR * DFw * AUF) / (BW) | Chemical | | Sc | Intake | Intake - Refined | | FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF)/(BW) + (Cw * IR * DFw * AUF) / (BW) | 4 4' DDT | | 1 105 02 | 1 175 07 | 0.745.00 | | FOOD INGESTION INTAKE = ((Cc * IR * Dfc * AUF)/(BW) + (Cw * IR * DFw * AUF) / (BW) Parameter | | | | | | | INTAKE = ((Cc * IR * Dfc * AUF)/(BW) + (Cw * IR * DFw * AUF) / (BW) | ZITIC | | 9.01E+02 | 1.02E-02 | 8.51E-U3 | | Parameter Definition Value Reference Intake Intake of chemical (mg/kg-day) calculated Cc | FOOD INGESTION | | | | | | Intake | INTAKE = ((Cc * IR * Dfc * | AUF)/(BW) + (Cw * IR * DFw * AUF) / (BW) | | | | | Intake | Parameter | Definition | | Value | Reference | | Cc Crab concentration (mg/kg) see Table I-8 | | | | | 1101010100 | | Cw Worm concentration (mg/kg) see Table I-8 IR - refined Mean Ingestion rate of food (kg/day)*** 9.40E-05 EPA, 1993 IR Maximum Ingestion rate of food (kg/day)*** 9.40E-05 EPA, 1993 Dfc Dietary fraction of crabs (unitless) 2.50E-01 Kent, 1986 Dff Dietary fraction of fish (unitless) 7.50E-01 Kent, 1986 Dff Dietary fraction of fish (unitless) 7.50E-01 Kent, 1986 AUF - refined Refined Area Use Factor 1 EPA, 1993 AUF Default Area Use Factor 1 EPA, 1993 BW refined Mean Body weight (kg) 2.12E-01 EPA, 1993 BW Minimum Body weight (kg) 1.77E-01 EPA, 1993 Chemical Crab Fish Intake Intake - Refined 4.4*-DDT 2.98E-03 6.38E-03 2.93E-06 2.45E-06 Zinc 1.10E+03 1.10E+03 5.81E-01 4.85E-01 TOTAL INTAKE INTAKE = Sediment Intake + Water Intake + Food Intake | | | | | | | R - refined Mean Ingestion rate of food (kg/day)*** 9.40E-05 EPA, 1993 R | | | | | | | R | | | | | FPA 1993 | | Dfc Dietary fraction of crabs (unitless) 2.50E-01 Kent, 1986 Dff Dietary fraction of fish (unitless) 7.50E-01 Kent, 1986 AUF - refined Refined Area Use Factor 1 EPA, 1993 AUF Default Area Use Factor 1 EPA, 1997 BW - refined Mean Body weight (kg) 2.12E-01 EPA, 1993 BW Minimum Body weight (kg) 1.77E-01 EPA, 1993 Chemical Crab Fish Intake Intake - Refined Chemical 2.98E-03 6.38E-03 2.93E-06 2.45E-06 Zinc 1.10E+03 1.10E+03 5.81E-01 4.85E-01 TOTAL INTAKE INTAKE = Sediment Intake +Water Intake + Food Intake Chemical Total Intake Intake - Refined 4,4'-DDT 3.05E-06 2.55E-06 | | | ** | | | | Diff Dietary fraction of fish (unitless) 7.50E-01 Kent, 1986 AUF refined Refined Area Use Factor 1 EPA, 1993 BW - refined Mean Body weight (kg) 2.12E-01 EPA, 1993 BW Minimum Body weight (kg) 1.77E-01 EPA, 1993 Chemical Crab Fish Intake Intake - Refined 4.4*-DDT 2.98E-03 6.38E-03 2.93E-06 2.45E-06 Zinc 1.10E+03 1.10E+03 5.81E-01 4.85E-01 TOTAL INTAKE INTAKE = Sediment
Intake +Water Intake + Food Intake Total Intake Intake - Refined Chemical 3.05E-06 2.55E-06 | | | | | | | AUF - refined | | | | | • | | AUF Default Area Use Factor BW - refined Mean Body weight (kg) BW Minimum Body weight (kg) Chemical Crab Fish Intake Intake - Refined 4.4'-DDT 2.98E-03 6.38E-03 2.93E-06 2.45E-06 Zinc 1.10E+03 1.10E+03 5.81E-01 TOTAL INTAKE INTAKE INTAKE = Sediment Intake + Water Intake + Food Intake Total Intake Intake - Refined 4.4'-DDT 3.05E-06 2.55E-06 | | | | | | | BW - refined BW - Interest Int | | | | | | | BW Minimum Body weight (kg) 1.77E-01 EPA, 1993 | | | | | | | Chemical Crab Fish Intake Intake - Refined 4,4'-DDT 2.98E-03 6.38E-03 2.93E-06 2.45E-06 Zinc 1.10E+03 1.10E+03 5.81E-01 4.85E-01 TOTAL INTAKE INTAKE = Sediment Intake +Water Intake + Food Intake Chemical Total Intake Intake - Refined 4,4'-DDT 3.05E-06 2.55E-06 | | | | | | | 4,4'-DDT | 5 | William Dody Weight (kg) | | 1.772 01 | El A, 1999 | | 4,4'-DDT | Chemical | Crah | Fich | Intaka | Intake - Refined | | Zinc | Chemical | Orab | 1 1011 | mano | make Kemica | | TOTAL INTAKE INTAKE = Sediment Intake + Water Intake + Food Intake Total Total Intake Intake - Refined 4,4'-DDT 3.05E-06 2.55E-06 | | | | 2.93E-06 | | | INTAKE = Sediment Intake +Water Intake + Food Intake | Zinc | 1.10E+03 | 1.10E+03 | 5.81E-01 | 4.85E-01 | | Total Total Chemical Intake Intake - Refined 4,4'-DDT 3.05E-06 2.55E-06 | TOTAL INTAKE | | | | | | Chemical Intake Intake - Refined 4,4'-DDT 3.05E-06 2.55E-06 | INTAKE = Sediment Intake | +Water Intake + Food Intake | | | | | Chemical Intake Intake - Refined 4,4'-DDT 3.05E-06 2.55E-06 | | | | | | | | Chemical | | | | | | | | | | | | | IZinc * 6.66E-01 5.55E-01 | | | | | | | | Zinc * | | | 6.66E-01 | 5.55E-01 | #### NOTES: Shaded rows are the exposure parameters to be used in the Refinement Step 3a of the ERA process. Ingestion rate equations, inclusive of body weight, are the same as those used in pre-Refinement calculations. - * Total Intake for the COPEC includes all three exposure pathways. ** COPEC was measured in crab tissue and water, but not in sediment. *** Expressed in dry weight. ## TABLE G-6 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR POND SEDIMENT Avian Carnivore (SANDPIPER) | Ecological Hazard | Quotient = Total Intake / TRV | | | | | | |---------------------|--|----------|-------------------------|------------|----------|--| | Parameter | Definition | | | efault | | | | Total Intake
TRV | Intake of COPEC (mg/kg
Toxicity Reference Value | | e Intake
e Table I-2 | | | | | | | Total | TRV | | | | | | Total | Intake - | | | EHQ - | | | Chemical | Intake | Refined | Sandpiper | EHQ | Refined | | | 4,4'-DDT | 7.07E-06 | 5.66E-06 | 2.27E-01 < | < 3.11E-05 | 2.49E-05 | | ## TABLE G-7 ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR POND SEDIMENT Avian Carnivore (GREEN HERON) | Ecological Hazard | d Quotient = Total Intake / TRV | | | | | | |---------------------|---------------------------------|--|---------------------|----------------------|----------------------|--| | Parameter | Definition | | Defa | ult | | | | Total Intake
TRV | | Intake of COPEC (mg/kg-day) Toxicity Reference Value (mg/kg) | | | | | | | | Total | TRV | | | | | Chemical | Total
Intake | Intake -
Refined | Green Heron | EHQ | EHQ -
Refined | | | 4,4'-DDT
Zinc | 3.05E-06
6.66E-01 | 2.55E-06
5.55E-01 | 2.27E-01 < 6.61E+01 | 1.34E-05
1.01E-02 | 1.12E-05
8.40E-03 | | ### TABLE G-8 CONCENTRATION OF CHEMICAL IN FOOD ITEM (mg/kg) #### Cfood = Csed x BSAF (or BSAF or BCF with food chain multiplier) where: Cfood = Chemical Concentration in food (mg/kg dry) Csed = Chemical Concentration in soil (mg/kg dry) BSAF Biota to Sediment Accumulation Factor (unitless) BCF = Bioconcentration Factor (unitless) | Compound | Csed
(mg/kg) | Sediment to Worm
BSAF | Worm Concentration | Reference | Sediment to Crab
BSAF | Crab
Concentration | Reference | Sediment to Fish
BSAF | Fish
Concentration | Reference | |------------------|----------------------|--------------------------|--------------------|----------------------|--------------------------|-----------------------|-------------------|--------------------------|-----------------------|---| | 4,4'-DDT
Zinc | 1.10E-02
9.61E+02 | | | BSAF DB
EPA, 2003 | *
1.14E+00 | 2.98E-03
1.10E+03 | *
Max value fr | 5.80E-01
1.14E+00 | | SDOH, 1995
ax value from Calcasieu R | #### Notes: - * These compounds were analyzed but not detected in any blue crab samples collected at the Site; so value is one-half of maximum detection limit. - *+ These compounds were not included in crab tissue analysis per the approved Sampling & Analysis Plan. - ** If no BAF or BCF was available in the literature, a default value of 1.0 was used. - *** COPEC was measured in crab tissue and surface water, but not in sediment. #### **TABLE G-9** ECOLOGICAL HAZARD QUOTIENT CALCULATIONS FOR POND SEDIMENT POLYCHAETES -- MIDPOINT BETWEEN ERL AND ERM COMPARISON | Ecological Hazard | Quotient = Sc/TRV | | | |------------------------|--|-------------|--| | Parameter
Sc
TRV | Definition Sediment Concentration (mg/kg) Toxicity Reference Value (mg/kg) | | Default
see below
see TRV summary page | | Chemical | Exposure Point Concentra | tion* TRV | Maximum | | | (Sc) | polychaetes | EHQ⁺ | | 4,4'-DDT | 1.57E-03 | 3.20E-02 | 4.90E-02 | | Zinc | 9.99E+02 | 2.80E+02 | 3.57E+00 | Notes: *EPC for benthic receptors is maximum measured concentration. ^{*}Shading indicates HQ > 1. # APPENDIX H REFERENCES FOR THE APPENDICES #### APPENDIX H – REFERENCES FOR APPENDICES Bechtel Jacobs Company LLC. 1998. *Empirical Models for the Uptake of Inorganic Chemicals from Soil by Plants*. BJC/OR-133. Prepared for the U.S. Department of Energy, Office of Environmental Management. September. 116 pp. Calder, WA, and EJ Braun, 1983. Scaling of osmotic regulation in mammals and birds. Am J Physiol. 224: Rr601-R606. Cammen, L. 1979. Ingestion Rate: An Empirical Model for Aquatic Deposit Feeders and Detritivores. *Oecologia*. 44:303-310. Davis, WB, and DJ Schmidley, 2009. *The Mammals of Texas, online edition*. www.nrsl.ttu.edu/tmot1/.accessed December 14, 2009. Dunning, Jr., JB. 1993. CRC Handbook of Avian Body Masses. CRC Press, Inc.: Boca Raton, Florida. Kent, DM. 1986. Behavior, habitat use, and food of three egrets in a marine habitat. *Colonial Waterbirds*. 9:25-30. Neill, 1998. Personal communication on March 13, 1998 as contained in Alcoa, 2000. Sample, B.E., D.M. Opresko, and G.W. Suter II, 1996. *Toxicological Benchmarks for Wildlife: 1996 Revision.* Health Sciences Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Sample, B.E., M.S. Aplin, R.A. Efroymson, G.W. Suter II, and C.J.E. Welsh, 1997. Methods and Tools for Estimation of the Expsoure of Terrestrial Wildlife to Contaminants. ORNL/TM-13391. Prepared for the U.S. Department of Energy, Office of Environmental Management by Oak Ridge National Laboratory. October. Sample, B.E., J.J. Beauchamp, R.A. Efroymson, and G.W. Suter II. 1998a. *Development and Validation of Bioaccumulation Models for Small Mammals*. ES/ER/TM-219. Prepared for the U.S. Department of Energy, Office of Environmental Management by Oak Ridge National Laboratory. February. 92 pp. Sample, B.E., J.J. Beauchamp, R.A. Efroymson, G.W. Suter II, and T.L. Ashwood. 1998b. *Development and Validation of Bioaccumulation Models for Earthworms*. ES/ER/TM-220. Prepared for the U.S. Department of Energy, Office of Environmental Management by Oak Ridge National Laboratory. February. 53 pp. Texas Parks and Wildlife Department (TPWD), 2005. Online database with endangered species listing. www.tpwd.state.tx.us/huntwild/wild/species/?c=endangered. United States Army Corps of Engineers, (BSAF DB), 2010. BSAF online database. Engineer Research and Development Center, Environmental Laboratory. http://el.erdc.usace.army.mil/bsafnew/BSAF.html United States Environmental Protection Agency (EPA), 1993. Wildlife Exposure Factors Handbook, Volume I of II. Office of Research and Development. EPA/600/R-93/187a. United States Environmental Protection Agency (EPA), 1997. *Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. Interim Final.* Office of Solid Waste and Emergency Response. OSWER 9285.7-25. EPA 540-R-97-006. June. United States Environmental Protection Agency (EPA), 1999. Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities. Office of Solid Waste and Emergency Response. EPA530-D-99-001A. August. United States Environmental Protection Agency (EPA), 2000. Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment Bulletins. EPA Region 4, originally published November 1995, Website version last updated May 2000: http://www.epa.gov/region4/waste/oftecser/healtbul.htm. United States Environmental Protection Agency (EPA), 2005a. *Ecological Soil Screening Levels for Antimony*. *Interim Final*. Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-61. February. United States Environmental Protection Agency (EPA), 2005b. *Ecological Soil Screening Levels for Cadmium. Interim Final.* Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-65. March. United States Environmental Protection Agency (EPA), 2005c. *Ecological Soil Screening Levels for Chromium. Interim Final.* Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-66. March.
United States Environmental Protection Agency (EPA), 2005d. *Ecological Soil Screening Levels for Vanadium. Interim Final.* Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-75. April. United States Environmental Protection Agency (EPA), 2005e. *Ecological Soil Screening Levels for Lead. Interim Final.* Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-70. March. United States Environmental Protection Agency (EPA), 2005f. *Ecological Soil Screening Levels for Dieldrin. Interim Final.* Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-56. March. United States Environmental Protection Agency (EPA), 2005g. *Ecological Soil Screening Levels for Barium. Interim Final.* Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-63. February. United States Environmental Protection Agency (EPA), 2007a. *Ecological Soil Screening Levels for DDT and Metabolites*. Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-57. April. United States Environmental Protection Agency (EPA), 2007b. *Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs)*. *Interim Final*. Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-78. June. United States Environmental Protection Agency (EPA), 2007c. *Ecological Soil Screening Levels for Copper. Interim Final.* Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-68. February. United States Environmental Protection Agency (EPA), 2007d. *Ecological Soil Screening Levels for Nickel. Interim Final.* Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-76. March. United States Environmental Protection Agency (EPA), 2007e. *Ecological Soil Screening Levels for Zinc*. Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-73. June. United States Environmental Protection Agency (EPA), 2007f. *Ecological Soil Screening Levels for Selenium. Interim Final.* Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-73. June. Source: Base map taken from http://www.tnris.state.tx.us Freeport, Texas 7.5 min. U.S.G.S. quadrangle, 1974. #### GULFCO MARINE MAINTENANCE FREEPORT, BRAZORIA COUNTY, TEXAS ### Figure 1 SITE LOCATION MAP | PROJECT: 1352 | BY: ZGK | REVISIONS | |-------------------|--------------|-----------| | DATE: MARCH, 2010 | CHECKED: EFP | 1 | #### PASTOR, BEHLING & WHEELER, LLC CONSULTING ENGINEERS AND SCIENTISTS #### **EXPLANATION** Gulfco Marine Maintenance Site Boundary (approximate) Lot Boundary (approximate) ### FREEPORT, BRAZORIA COUNTY, TEXAS Figure 2 #### SITE MAP | PROJECT: 1352 | BY: ZGK | REVISIONS | |-------------------|--------------|-----------| | DATE: MARCH, 2010 | CHECKED: EFP | | #### PASTOR, BEHLING & WHEELER, LLC CONSULTING ENGINEERS AND SCIENTISTS Source of photo: H-GAC, Texas aerial photograph, 2006. #### **EXPLANATION** - Gulfco Marine Maintenance Site Boundary (approximate) - Shallow Soil Sample (0-2 ft) - Shallow (0-2 ft) and Deep (4-5 ft) Soil Sample #### Notes: - 1. BGS = below ground surface. - For sample concentration data, see SLERA Figures 6A through 6D. - * All Hazard Quotients for other receptors or compounds of concern were less than one. Hazard Quotients were based on No Observable Adverse Effects Level. #### Hazard Quotients: > 1 and ≤ 2 > 2 and ≤ 5 > 5 but ≤ 10 > 10 Source of photo: H-GAC, Texas aerial photograph, 2006. #### GULFCO MARINE MAINTENANCE FREEPORT, BRAZORIA COUNTY, TEXAS Figure 5 HAZARD QUOTIENTS GREATER THAN ONE FOR SOIL INVERTEBRATES* - SOUTH AREA SOIL PROJECT: 1352 BY: ZGK REVISIONS DATE: MARCH, 2010 CHECKED: KHT PASTOR, BEHLING & WHEELER, LLC CONSULTING ENGINEERS AND SCIENTISTS #### **EXPLANATION** Gulfco Marine Maintenance Site Boundary (approximate) Intracoastal Waterway Sediment Sample \triangle Intracoastal Waterway Surface Water Sample Attempted Intracoastal Waterway Sediment Sample (not enough sediment present to allow for sampling) #### Note - For sample concentration data, see SLERA Figure 9. - * All Hazard Quotients for other receptors or compounds of concern were less than one. HQs for benthic receptors were based on the Effects Range Low except hexachlorobenzene which were based on the Apparent Effects Threshold. #### Hazard Quotients: > 1 and ≤ 2 > 2 and ≤ 5 > 5 but ≤ 10 > 10 Approx. Scale in Feet 0 60 120 Source of photo: H-GAC, Texas aerial photograph, 2006. ### GULFCO MARINE MAINTENANCE FREEPORT, BRAZORIA COUNTY, TEXAS Figure 7 HAZARD QUOTIENTS GREATER THAN ONE FOR BENTHIC RECEPTORS*- INTRACOASTAL WATERWAY SEDIMENT PROJECT: 1352 BY: ZGK DATE: MARCH, 2010 CHECKED: KHT REVISIONS KHT #### PASTOR, BEHLING & WHEELER, LLC CONSULTING ENGINEERS AND SCIENTISTS #### **D**RAFT ## BASELINE ECOLOGICAL RISK ASSESSMENT PROBLEM FORMULATION FOR THE GULFCO MARINE MAINTENANCE SUPERFUND SITE FREEPORT, TEXAS #### PREPARED BY: Pastor, Behling & Wheeler, LLC 2201 Double Creek Drive Suite 4004 Round Rock, Texas 78664 (512) 671-3434 MARCH 10, 2010 #### TABLE OF CONTENTS | LIST OF TABLES | ii | |---|--------| | LIDI OI IIIDLLO | 11 | | LIST OF FIGURES | ii | | LIST OF APPENDICES | iii | | | | | LIST OF ACRONYMS | iv | | EXECUTIVE SUMMARY | vi | | 1.0 INTRODUCTION | | | 1.0 INTRODUCTION | | | 1.1 REPORT PURPOSE | | | 1.2 SITE BACKGROUND | | | 1.2.1 Site Description | | | 1.2.2 Site History | | | 1.3 REPORT ORGANIZATION | 5 | | 2.0 REFINEMENT OF CONTAMINANTS OF POTENTIAL ECOLOGICAL CONC | FRN 6 | | 2.1 REFINEMENT PROCEDURES AND RESULTS | | | 2.2 BACKGROUND COMPARISON | | | 2.3 SPATIAL DISTRIBUTION OF REMAINING COPECS | | | 2.5 SI MINE DISTRIBUTION OF REMAINING COLLES | ر | | 3.0 CHARACTERIZATION OF ECOLOGICAL EFFECTS | 12 | | | | | 4.0 CONTAMINANT FATE AND TRANSPORT AND ECOSYSTEMS POTENTIA | LLY AT | | RISK | 13 | | 4.1 CONTAMINANT FATE AND TRANSPORT | 13 | | 4.1.1 Potential Transport Mechanisms in Terrestrial Systems | 13 | | 4.1.2 Potential Transport Mechanisms in Estuarine Wetland and Aquatic S | | | | 14 | | 4.1.3 COPEC-Specific Fate and Transport Characteristics | 15 | | 4.2 ECOSYSTEMS POTENTIALLY AT RISK | 17 | | | | | 5.0 SITE-SPECIFIC ASSESSMENT ENDPOINTS | | | 5.1 TERRESTRIAL ASSESSMENT ENDPOINTS | | | 5.2 ESTUARINE WETLAND AND AQUATIC ASSESSMENT ENDPOINTS | 18 | | CO CONCEDENTAL GIVE MODEL AND DIGITALISATIONS | 20 | | 6.0 CONCEPTUAL SITE MODEL AND RISK QUESTIONS | 20 | | 6.1 CONCEPTUAL SITE MODEL | | | 6.2 RISK QUESTIONS | 21 | | 7.0 SCIENTIFIC MANAGEMENT DECISION POINT | 23 | | 7.0 SCIENTIFIC WITH MODIFICATION TO DECISION TO HAT I | 43 | | 8.0 REFERENCES | 24 | #### LIST OF TABLES | <u>Table</u> | <u>Title</u> | |--------------|--| | 1 | Updated Ecological Hazard Quotients Exceeding One for Soil | | 2 | Updated Ecological Hazard Quotients Exceeding One for Sediment and Surface Water | | 3 | Revised Sediment Toxicity Values | | 4 | Assessment Endpoints and Risk Questions | | 5 | COPECs and Media Recommended for Further Evaluation in the Work Plan for Baseline Ecological Risk Assessment | #### LIST OF FIGURES | <u>Figure</u> | <u>Title</u> | |---------------|---| | 1 | Site Location Map | | 2 | Site Map | | 3 | Ecological Risk Assessment Process | | 4 | Wetland Map | | 5 | Hazard Quotients Greater than One for Soil Invertebrates - South
Area Soil | | 6 | Hazard Quotients Greater than One for Soil Invertebrates - North Area Soil | | 7 | Hazard Quotients Greater than One for Benthic Receptors -
Intracoastal Waterway Sediment | | 8 | Hazard Quotients Greater than One for Benthic Receptors - Wetlands Sediment | | 9 | Hazard Quotients Greater than One for Benthic Receptors - Pond Sediment | | 10 | Terrestrial Ecosystem Conceptual Site Model | | 11 | Aquatic Ecosystem Conceptual Site Model | #### LIST OF APPENDICES | <u>Appendix</u> | <u>Title</u> | |-----------------|--| | A | Table 29 (COPECs and Media Recommended for Further Evaluation in the Baseline Ecological Risk Assessment) from SLERA | | В | Background Comparisons | | С | Ecological Hazard Quotient Calculations for South Area Soil | | D | Ecological Hazard Quotient Calculations for North Area Soil | | Е | Ecological Hazard Quotient Calculations for Intracoastal Waterway Sediment | | F | Ecological Hazard Quotient Calculations for Wetland Sediment | | G | Ecological Hazard Quotient Calculations for Pond Sediment | | Н | References for the Appendices | #### LIST OF ACRONYMS AET – apparent effects threshold AST – aboveground storage tank AUF – area-use factor (unitless) BERA – Baseline Ecological Risk Assessment COPEC - contaminants of potential ecological concern CSM – conceptual site model DDD – dichlorodiphenyldichloroethylene DDE-dichlorodiphenyl dichloroethane DDT - dichlorodiphenyltrichloroethane EPA – United States Environmental Protection Agency ERL – effects range low ERM – effects range medium GRG – Gulfco Remediation Group HPAH – high-molecular weight polynuclear aromatic hydrocarbon HQ - hazard quotient LOAEL – lowest-observed-effects-level LPAH – low-molecular weight polynuclear aromatic hydrocarbon NEDR – Nature and Extent Data Report NOAEL – no-observed-adverse-effects-level NPL – National Priorities List PAH – polynuclear aromatic hydrocarbon PCB – polychlorinated biphenyl PCL – Protective Concentration Level PSA – Potential Source Area QAPP – Quality Assurance Project Plan RI/FS – Remedial Investigation/Feasibility Study ROPC – receptors of potential concern SAP – Sampling and Analysis Plan SLERA – Screening-Level Ecological Risk Assessment SMDP - Scientific Management Decision Point SOW - Statement of Work TCEQ – Texas Commission on Environmental Quality TSWQS - Texas Surface Water Quality Standard UAO – Unilateral
Administrative Order USFWS – United States Fish and Wildlife Service WP/SAP – Work Plan and Sampling and Analysis Plan #### **EXECUTIVE SUMMARY** The purpose of the Baseline Ecological Risk Assessment (BERA) problem formulation for the former Gulfco Marine Maintenance, Inc. site in Freeport, Brazoria County, Texas (the Site) is to use the Screening-Level Ecological Risk Assessment (SLERA) results and additional site-specific information to determine the scope and goals of the BERA. Problem formulation includes the following: - Refining the preliminary list of Contaminants of Potential Ecological Concern (COPECs) identified in the SLERA; - Further characterizing the ecological effects of the refined COPEC list; - Reviewing and refining information on contaminant fate and transport, complete exposure pathways, and ecosystems potentially at risk; - Determining assessment endpoints (i.e., the specific ecological values to be protected); and - Developing a conceptual site model with risk questions for the ecological investigation to address. Steps were taken to refine the COPEC list (i.e., modification of conservative exposure assumptions, consideration of background metals concentrations, and review of spatial COPEC distributions) and conduct literature research on the ecological effects of the refined list of COPECs, as well as their fate and transport characteristics relative to Site conditions. Subsequent to these steps, the following ecosystems have been identified as potentially at risk: - Localized wetland areas in the North Area of the Site and north of the Site. The primary COPECs with hazard quotients (HQs) greater than one in wetland sediment are several polynuclear aromatic hydrocarbons (PAHs). Most of the PAH HQs exceedances are located in three areas: (1) a small area immediately northeast of the former surface impoundments; (2) a smaller area immediately south of the former surface impoundments; and (3) at a sample location in the southwest part of the North Area approximately 60 feet north of Marlin Avenue. Additionally, dissolved copper in wetland surface water in the first area (the area northeast of the former surface impoundments) exceeds its Texas Surface Water Quality Standard (TSWQS). - Localized areas of Intracoastal Waterway sediment within former Site barge slips. The predominant COPECs in these areas, as reflected by HQ exceedances, are also PAHs. The total PAH concentration was highest in the northernmost sample in the western barge slip. In the eastern barge slip, exceedances were limited to three PAHs, hexachlorobenzene, and the sum of high molecular weight PAHs (HPAHs) in one sample. • Localized area of North Area soils south of the former surface impoundments. The COPECs in this area, where some buried debris was encountered in the shallow subsurface, are 4,4'-DDT and Aroclor-1254. The risk questions developed for these areas through the BERA Problem Formulation are: <u>Barge Slip and Wetland sediments</u>: Does exposure to COPECs in sediment adversely affect the abundance, diversity, productivity, and function of sediment invertebrates? <u>Wetland surface water</u>: Does exposure to COPECs in surface water adversely affect the abundance, diversity, productivity, and function of water-column invertebrates? <u>North Area soils</u>: Does exposure to COPECs in soil adversely affect the abundance, diversity, productivity, and function of soil invertebrates? The approach for evaluating these risk questions, through the development and implementation of testable hypotheses and measures of effect and exposure based on this BERA problem formulation will be described in the BERA Work Plan and Sampling and Analysis Plan (SAP). #### 1.0 INTRODUCTION The United States Environmental Protection Agency (EPA) named the former site of Gulfco Marine Maintenance, Inc. in Freeport, Brazoria County, Texas (the Site) to the National Priorities List (NPL) in May 2003. The EPA issued a modified Unilateral Administrative Order (UAO), effective July 29, 2005, which was subsequently amended effective January 31, 2008. The UAO required Respondents to conduct a Remedial Investigation and Feasibility Study (RI/FS) for the Site. Pursuant to Paragraph 37(d)(x) of the Statement of Work (SOW) for the RI/FS, included as an Attachment to the UAO, a Screening Level Ecological Risk Assessment (SLERA) was prepared for the Site (PBW, 2010). The Scientific/Management Decision Point (SMDP) provided in the SLERA concluded that the information presented therein indicated a potential for adverse ecological effects, and a more thorough assessment was warranted. This Baseline Ecological Risk Assessment (BERA) Problem Formulation has been prepared, consistent with Paragraphs 37(d)(xi) and (xii) of the UAO as the next step in that assessment. This report was prepared by Pastor, Behling & Wheeler, LLC (PBW), on behalf of LDL Coastal Limited LP (LDL), Chromalloy American Corporation (Chromalloy) and The Dow Chemical Company (Dow), collectively known as the Gulfco Restoration Group (GRG). Figure 1 provides a map of the Site vicinity, while Figure 2 provides a Site map. #### 1.1 REPORT PURPOSE The ecological risk assessment process is outlined in the SOW (Page 20, Paragraphs 37(d)(xi) and (xii)). A diagram of the process as provided in EPA's Ecological Risk Assessment Process for Superfund (EPA, 1997) is provided in Figure 3. Problem formulation represents the third step in the eight-step ecological risk assessment process. The purpose of the problem-formulation phase is to refine the screening level problem formulation, and use the SLERA results and additional site-specific information to determine the scope and goals of the BERA. As described in EPA, 1997, problem formulation includes the following: - Refining the preliminary list of COPECs identified in the SLERA; - Further characterizing the ecological effects of the refined COPEC list; - Reviewing and refining information on contaminant fate and transport, complete exposure pathways, and ecosystems potentially at risk; - Determining specific assessment endpoints (i.e., the specific ecological values to be protected); and Developing a conceptual model with risk questions that the ecological investigation will address. The SMDP at the end of problem formulation is the identification and agreement on the conceptual model, including assessment endpoints, exposure pathways, and questions or risk hypotheses. The results of this SMDP are then used to select measurement endpoints for development of the BERA Work Plan and Sampling and Analysis Plan (WP/SAP). #### 1.2 SITE BACKGROUND #### 1.2.1 Site Description The Site is located in Freeport, Texas at 906 Marlin Avenue (also referred to as County Road 756) (Figure 1). The Site consists of approximately 40 acres along the north bank of the Intracoastal Waterway between Oyster Creek (approximately one mile to the east) and the Texas Highway 332 bridge (approximately one mile to the west). The Site includes approximately 1,200 feet (ft.) of shoreline on the Intracoastal Waterway, the third busiest shipping canal in the US (TxDOT, 2001) that, on the Texas Gulf Coast, extends 423 miles from Port Isabel to West Orange. Marlin Avenue divides the Site into two primary areas (Figure 2). For the purposes of descriptions in this report, Marlin Avenue is approximated to run due west to east. The property to the north of Marlin Avenue (the North Area) consists of undeveloped land and closed surface impoundments, while the property south of Marlin Avenue (the South Area) was developed for industrial uses with multiple structures, a dry dock, sand blasting areas, an aboveground storage tank (AST) tank farm, and two barge slips connected to the Intracoastal Waterway. The South Area is zoned as "W-3, Waterfront Heavy" by the City of Freeport. This designation provides for commercial and industrial land use, primarily port, harbor, or marine-related activities. The North Area is zoned as "M-2, Heavy Manufacturing." Adjacent property to the north, west, and east of the North Area is undeveloped. Adjacent property to the east of the South Area is currently used for industrial purposes while to the west the property is currently vacant and previously served as a commercial marina. The Intracoastal Waterway bounds the Site to the south. Residential areas are located south of Marlin Avenue, approximately 300 feet west of the Site, and 1,000 feet east of the Site. The Intracoastal Waterway is a major corridor for commercial barge traffic and other boating activities. Approximately 50,000 commercial vessel trips and 28 million short tons of cargo were transported on the Galveston to Corpus Christi section of the Intracoastal Waterway in 2006. The vast majority of this cargo (greater than 23 million tons) was petroleum, chemicals or related products (USACE, 2006). The Intracoastal Waterway design width and depth in the vicinity of the Site, based on USACE mean low tide datum, is 125 feet wide and 12 feet deep (USACE, 2008). The waterway is maintained by periodic dredging operations conducted by the USACE as frequently as every 20 to 38 months, and as infrequently as every 5 to 46 years (Teeter et al., 2002). A September 2008 survey indicated that actual channel depths in the 19-mile reach from Chocolate Bayou to Freeport Harbor, which includes the Site vicinity, ranged from 9.3 to 11.1 feet (USACE, 2008). According to the USACE (USACE, 2009), the Intracoastal Waterway in the immediate vicinity of the Site is not currently scheduled for dredging, although dredging is performed approximately every three to four years and the area to the west near Freeport Harbor (Intracoastal Waterway Mile 395) was dredged in 2009. The South Area includes approximately 20 acres of upland that was created from dredged material from the Intracoastal Waterway. The two most significant surface features within the South Area are a Former Dry Dock and the AST Tank Farm (Figure 2). The
remainder of the South Area surface consists primarily of former concrete laydown areas, concrete slabs from former Site buildings, gravel roadways and sparsely vegetated open areas with some localized areas of denser brush vegetation, particularly near the southeast corner of the South Area. Some of the North Area is upland created from dredge spoil, but most of this area is considered wetlands, as per the United States Fish and Wildlife Service (USFWS) Wetlands Inventory Map (Figure 4) (USFWS, 2008). This wetland area generally extends from East Union Bayou to the southwest, to the Freeport Levee to the north, to Oyster Creek to the east (see Figure 1). The most significant surface features in the North Area are two ponds (the Fresh Water Pond and the Small Pond) and the closed former surface impoundments. The former surface impoundments and the former parking area south of the impoundments and Marlin Avenue comprise the vast majority of the upland area within the North Area (Figure 4). Field observations during the RI indicate that the North Area wetlands are irregularly flooded with nearly all of the wetland area inundated by surface water that can accumulate to a depth of one foot or more during extreme high tide conditions, storm surge events, and/or in conjunction with surface flooding of Oyster Creek northeast of the Site (Figure 1). Due to a very low topographic slope and low permeability surface sediments, the wetlands are also very poorly draining and can retain surface water for prolonged periods after major rainfall events. Under normal tide conditions and during periods of normal or below normal rainfall, standing water within the wetlands (outside of the two ponds discussed below) is typically limited to a small, irregularly shaped area immediately north of the Fresh Water Pond and a similar area immediately south of the former surface impoundments (see Figure 2). Both of these areas can be completely dry, as was observed in June 2008. As such, given the absence of any appreciable areas of perennial standing water, the wetlands are effectively hydrologically isolated from Oyster Creek, except during intermittent, and typically brief, flooding events. The Fresh Water Pond is approximately 4 to 4.5 feet deep and is relatively brackish (specific conductance of approximately 40,000 umhos/cm and salinity of approximately 25 parts per thousand). This pond appears to be a borrow pit created by the excavation of soil and sediment as suggested by the well-defined pond boundaries and relatively stable water levels. Water levels in the Fresh Water Pond are not influenced by periodic extreme tidal fluctuations as the pond dikes preclude tidal floodwaters in the wetlands from entering the pond, except for extreme storm surge events, such as observed during Hurricane Ike in September 2008. The Small Pond is a very shallow depression located in the eastern corner of the North Area. The Small Pond is not influenced by daily tidal fluctuations and behaves in a manner consistent with the surrounding wetland, i.e., becomes dry during dry weather, but retains water in response to and following rainfall and extreme tidal events. Relative to the Fresh Water Pond, water in the Small Pond is less brackish based on specific conductance (approximately 14,000 umhos/cm) and salinity (approximately eight parts per thousand) measurements. #### 1.2.2 Site History A detailed discussion of Site operational history was provided in the RI/FS Work Plan (PBW, 2006). Key elements of that discussion are noted herein. During the 1960s, the Site was used for occasional welding but there were no on-site structures (Losack, 2005). According to the Hazard Ranking Score Documentation (TNRCC, 2002), from 1971 through 1999, at least three different owners used the Site as a barge cleaning facility. Beginning in approximately 1971, barges were brought to the facility and cleaned of waste oils, caustics and organic chemicals, with these products stored in on-site tanks and later sold (TNRCC, 2002). Sandblasting and other barge repair/refurbishing activities also occurred on the Site. At times during the operation, wash waters were stored either on a floating barge, in on-site storage tanks, and/or in surface impoundments on Lot 56 of the Site. The surface impoundments were closed under the Texas Water Commission's (Texas Commission on Environmental Quality (TCEQ) predecessor agency) direction in 1982 (Carden, 1982). Aerial spraying of the wetland areas north of Marlin Avenue, including the North Area, for mosquito control has historically been and continues to be performed by the Brazoria County Mosquito Control District and its predecessor agency, the Brazoria County Mosquito Control Department (both referred to hereafter as BCMCD). Aerial spraying for mosquito control has been performed over rural areas in the county since 1957 (Lake Jackson News, 1957). Historically, aerial spraying of a DDT solution in a "clinging light oil base" was performed from altitudes of 50 to 100 feet (Lake Jackson News, 1957). Recently BCMCD has been using Dibrom®, an organophosphate insecticide, with a diesel fuel carrier through a fogging atomizer application (Facts, 2006, 2008a, 2008b). Truck-based spraying has also been performed along Marlin Avenue. Both types of spraying were observed during the performance of Site RI activities. #### 1.3 REPORT ORGANIZATION The organization for this report has been patterned after that suggested in EPA guidance (EPA, 1997). As such, Section 2.0 provides a refinement of the COPECs indentified in the SLERA. Section 3.0 characterizes the potential ecological effects of that refined list of COPECs. Section 4.0 describes significant fate and transport characteristics, ecosystems potentially at risk and complete exposure pathways. Section 5.0 describes assessment endpoints, and Section 6.0 provides the refined Conceptual Site Model and resulting risk decisions. The problem formulation SMDP is discussed in Section 7.0. Appendix A contains a table from the SLERA listing COPECs and media recommended for further evaluation in the BERA. Appendix B details a comparison of Site data to background. Appendices C through H contain the detailed calculation spreadsheets for the COPEC refinement described in Section 2.0. # 2.0 REFINEMENT OF CONTAMINANTS OF POTENTIAL ECOLOGICAL CONCERN The SLERA (PBW, 2010) concluded with the SMDP that there is a potential for adverse ecological effects from COPECs and a more thorough assessment through continuation of the ecological risk assessment process was warranted. The SLERA calculated HQs based on conservative screening-level assumptions, such as area-use factors (AUFs) of 100%, 100% contaminant bioavailability, maximum ingestion rates, and minimum body weights. Appendix A provides the SLERA tables identifying those COPECs with HQs greater than one. As illustrated in Appendix A, the screening-level evaluation identified HQs greater than one for the following Site media and receptors: - Invertebrate receptors in South Area soils (as represented by the earthworm); - Invertebrate receptors in North Area soils (also represented by the earthworm); - Invertebrate receptors in Background Area soils (again represented by the earthworm); - Benthic receptors in Site Intracoastal Waterway sediment (as represented by the polychaetes *Capitella capitata*); - Benthic receptors in Background Intracoastal Waterway sediment (also represented by the polychaetes *Capitella capitata*); - Benthic receptors in Site wetlands sediment (as represented by the polychaetes *Capitella capitata*); - Benthic receptors in Site pond sediment (as represented by the polychaetes *Capitella capitata*); and - Avian carnivore receptors that might be exposed to pond sediment and surface water (as represented by the sandpiper). Additionally, the maximum concentration in surface water of some COPECs is greater than the TCEQ ecological benchmark value or the TSWQS. These COPECs, acrolein, dissolved copper, and dissolved silver, are being further evaluated in the BERA and details are below. Upper trophic level receptors were determined to not be at risk from these COPECs in the SLERA. Acrolein was measured (0.00929 mg/L) in one of four surface water samples from the wetlands. It was not detected in any surface water samples from the Intracoastal Waterway or the two ponds. The single detection is greater than the TCEO ecological benchmark value of 0.005 mg/L by less than a factor of two. There is neither a TSWQS nor a recommended national water quality criterion from the EPA (2009) for chronic marine exposures. The maximum measured concentration of dissolved copper in surface water from the wetlands was 0.011 mg/L. It was not detected in any surface water samples from the Intracoastal Waterway or the two ponds. The maximum concentration is greater than the TSWQS of 0.0036 mg/L by about three-fold. The maximum measured concentration of dissolved silver in surface water from the ponds was 0.0029 mg/L. It was not detected in the surface water samples from the Site-related area of the Intracoastal Waterway or the wetlands. All detections are greater than the TCEQ ecological screening benchmark value of 0.00019 mg/L, the maximum being about 15 times greater. The maximum measured concentration of dissolved silver in surface water from the background area of the Intracoastal Waterway was 0.0058 mg/L. All detections are greater than the TCEQ ecological benchmark value of 0.00019 mg/L, the maximum being about 31 times greater. There is neither a TSWQS nor a recommended national water quality criterion from the EPA (2009b) for chronic marine exposures. The TCEQ ecological benchmark value is derived from the EPA (2009) acute marine recommended water quality criterion divided by a safety factor of 10. #### 2.1 REFINEMENT PROCEDURES AND RESULTS As described in EPA, 1997, the purpose of the refinement step of problem formulation is to consider how the HQs in
the SLERA would change when more realistic conservative assumptions are used. Consistent with that objective, the following modified assumptions are used here in the BERA to calculate revised HQs and refine the COPEC list, and includes the following: - Use of average (instead of maxima) ingestion rates for both media and foods consumed; - Use of average (instead of minima) body weights for food chain receptors; and - Use of AUFs less than 100% when it can be demonstrated that a specific receptor's home range size is greater than the size of the Site. The detailed spreadsheets in Appendices C through J describe the specific assumption modifications made for specific receptors and the resulting calculations. All of the modified assumptions for the refinement pertain to non-sedentary ecological food-chain receptors. Results of the refinement calculations include the deletion of the avian carnivore (sandpiper) receptor for the pond sediment. The HQ calculated in the SLERA for this receptor in the pond was 1.2. With changes in the ingestion rates, body weights and AUFs, the refined lead HQ for the avian carnivore (sandpiper) receptor at the ponds was 0.96. So, the exposure pathway including media and food ingestion of lead by the avian carnivore (sandpiper) is dismissed from further evaluation. All other COPECs from the SLERA still remain for further evaluation. ## 2.2 BACKGROUND COMPARISON As part of this problem formulation, Site metal COPECs in soil and/or sediment that are remaining after the refinement (barium, chromium, copper, lead, nickel, and zinc) were statistically compared to the same metal compounds in the background area for soil and sediment. This information was used in the development of Site-specific assessment endpoints (Section 5.0) and risk questions (Section 6.0), which will subsequently be used to develop testable hypotheses and measures as part of the study design in the WP/SAP. The COPEC concentrations in Site samples that are not statistically different from background concentrations are dismissed from further evaluation in the BERA (background data will still be discussed in the uncertainty section of the BERA report). The soil background data were compared to soil data from the South and North Areas of the Site, as well as sediments from the North wetland and the North Area ponds. As described in the Nature and Extent Data Report (NEDR) (PBW, 2009), this comparison was appropriate based on similarities in composition and condition between background soil and sediments of the North wetlands area. Sediment and surface water data for the Intracoastal Waterway samples were compared to sediment and surface water data collected in the Intracoastal Waterway background area. The background comparisons were performed using analysis of variance tests in accordance with EPA's *Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites* (EPA, 2002). The analysis of variance tests perform a comparison of the means analysis. The output of these background statistical comparison tests is provided in Appendix B. A summary of the statistical comparison conclusions is provided in Appendix Table B-1. The conclusion is that the Site concentrations of these metals COPECs are not different from the background concentrations for all metals evaluated. Nickel is retained for further evaluation because, as shown on Table B-1, it was not analyzed in the background samples. Therefore, the only metal COPEC in soil or sediment to be further evaluated is nickel in wetlands sediment. For the COPECs in surface water (acrolein, dissolved copper, and dissolved silver), a statistical comparison of means between Site and background data sets was not performed due to the small data set sizes (four background Intracoastal Waterway surface water samples and six pond surface water samples). However, dissolved silver was detected in all four background surface water samples at concentrations ranging from 0.0043 mg/L to 0.006 mg/L, while the maximum reported dissolved silver concentration in pond surface water samples was a lower value of 0.0029 mg/L. Based on this observation that all the pond surface water sample concentrations were less than the minimum background concentration, dissolved silver in pond surface water is dismissed from further evaluation in the BERA. #### 2.3 SPATIAL DISTRIBUTION OF REMAINING COPECS In order to evaluate potential hotspots and the spatial distributions of the remaining COPECs, HQ exceedances in individual samples are plotted by environmental medium in Figures 5 through 9. For soils, the HQs are based on no-observed-adverse-effects-levels (NOAELs). For sediments, HQs are based on Effects Range-Low (ERL) values, where available, or Apparent Effects Threshold (AET) values. The paragraphs below discuss the spatial trends of the HQ exceedances observed in the figures. Figure 5 shows HQ exceedances for soil invertebrates in the South Area. As indicated on this figure, the highest HQs and most of the exceedances are located near the former dry dock in the northwestern part of the South Area. As shown on Figure 5, most of those samples are from the side embankments of the dry dock itself, where the soils consist of compacted engineered fill. Other samples with exceedances in the South Area, namely those off the northeastern end of the westernmost barge slip and between the western and eastern barge slips, are also from areas devoid of vegetation where the soil is compacted from engineered fill or for use as a driveway. The highest HQ is 26 for 4,4'-DDD in sample SA3SB17. All other HQs were less than or equal to 5 and nearly 75 percent were less than or equal to 2. These areas of side embankments, engineered fill, and driveways are not considered habitat for soil invertebrates. Therefore, the exposure pathway is considered incomplete and the associated COPECs (4,4'-DDD, 4,4'-DDE, 4,4'-DDT, Aroclor-1254, and HPAH) are dismissed from further consideration for South Area soils in the BERA. At this point, South Area soils have no remaining COPECs, so this area/medium requires no further evaluation in the BERA. Figure 6 shows HQ exceedances for soil invertebrates in the North Area. As indicated on this figure, the only HQs are 4,4'-DDT and Aroclor-1254 in the 1.5 to 2.0 foot depth interval sample from SB-204. This boring was located in an area where buried debris was observed and some of this debris (painted wood fragments and rubber) was observed in this specific sample interval. Figure 7 shows HQ exceedances for benthic receptors in Site Intracoastal Waterway sediment. None of the HQs are greater than 5 and 75 percent are less than or equal to 2. As indicated on this figure, the HQs greater than one are nearly all PAHs, except for 4,4'-DDT in a sample next to the western boundary of the Site and hexachlorobenzene on the edge of the eastern barge slip, and most are associated with samples in the northern end of the western barge slip. Figure 8 shows HQ exceedances for benthic receptors in Site wetland sediment. As shown in this figure, the predominant and highest HQs are associated with PAHs (both individual PAHs and low molecular weight PAHs (LPAH), HPAH, and total PAHs). Most of the PAH HQs are located in three areas: (1) a small area immediately northeast of the former surface impoundment (where most of the highest PAH HQs are observed; e.g., 2WSED2); (2) a smaller area immediately south of the former surface impoundments (e.g., 2WSED17); and (3) at sample location NB4SE08 in the southwest part of the North Area. The three highest HQs, all located in the area north of the former surface impoundments, are for dibenz(a,h)anthracene. Figure 9 shows HQ exceedances for benthic receptors in pond sediment. As shown in this figure, the sole HQ is 4,4'-DDT in the southernmost sample from the Small Pond. There are two COPECs, acrolein and dissolved copper, with maximum concentrations that exceed their respective ecological screening benchmark and TSWQS. Acrolein was only detected once in four surface water samples from the wetlands area, and not detected in any other Site samples. Its concentration is slightly less than twice the benchmark value, so if a HQ were computed it would be rounded to 2. Dissolved copper was detected in three of four surface water samples from the wetlands area. All of the detections are greater than the TSWQS, the highest being about three times greater. Acrolein is being dismissed at this step because of its single detection in Site surface water and minimal exceedance above the benchmark value. Dissolved copper is being retained for further evaluation in the BERA. After the three refinement steps detailed above, the remaining COPECs, and their environmental medium and location, are listed in Tables 1 and 2. ## 3.0 CHARACTERIZATION OF ECOLOGICAL EFFECTS The SLERA (PBW, 2010) included a literature search of potential ecological effects from the initial COPECs. As part of problem formulation in the BERA, additional literature information related to the remaining Site COPECs was obtained and reviewed. Upper trophic level receptors are no longer considered to be at risk of adverse effects, so toxicological endpoints for these receptors, such as lowest-observed-adverse-effects-levels (LOAELs), did not need to be sought from the literature. Endpoint values similar to LOAELs that are used for invertebrates in sediment, Effects Range-Medium (ERM) were obtained from the scientific literature (Buchman, 2008.). Midpoint values were computed from these ERM values and the ERL values used in the SLERA and are listed in Table 3 for later use in the BERA. If an ERL value was not found for a particular COPEC, then the AET value (also used in the SLERA) is listed. A number of researchers have performed studies to determine AETs, which are measures of sediment effect levels developed using the empirical data from the results of toxicity tests and benthic community structure.
They are derived by determining, for a given chemical within a data set, the chemical sediment concentration above which a particular adverse biological effect is always statistically significant relative to a designated reference location. ERLs and ERMs are also statistically-derived sediment benchmark values based on a variety of benthic endpoints including mortality, community structure, reproductive, and other effects. ERL concentrations represent concentrations above which toxic effects to sediment organisms are possible, while ERM concentrations represent concentrations above which toxic effects are probable. # 4.0 CONTAMINANT FATE AND TRANSPORT AND ECOSYSTEMS POTENTIALLY AT RISK The SLERA (PBW, 2010) included a preliminary evaluation of contaminant fate and transport, ecosystems potentially at risk, and complete exposure pathways for COPECs and media that might pose an adverse risk to terrestrial and aquatic receptors. The exposure pathways and ecosystems associated with the assessment endpoints carried forward from the SLERA were evaluated in more detail in this problem formulation. Consistent with EPA (1997), this evaluation also considered the possible reduction of potentially complete, but less significant, exposure pathways to examine the critical exposure pathways, where appropriate. The findings of this evaluation are presented below. #### 4.1 CONTAMINANT FATE AND TRANSPORT Additional information was acquired from the scientific literature regarding the fate and transport of the remaining COPECs. Specifically, details about transport mechanisms in terrestrial and aquatic systems similar to those found at the Site were obtained and are discussed below. # 4.1.1 Potential Transport Mechanisms in Terrestrial Systems Potentially significant routes of migration for Site COPECs relative to terrestrial systems occur in the primary transport media of air and surface water (runoff). Surface water runoff, or overland flow, can carry dissolved COPECs in solution or move COPECs adsorbed to soil particles from one portion of the Site to another, depending on surface topography. The same mechanisms described for overland flow in the wetlands (Section 4.1.2) apply to the South Area and the upland areas of the North Area. Airborne transport of Site COPECs is possible via entrainment of COPEC-containing particles in wind. This pathway is a function of particle size, chemical concentrations, moisture content, degree of vegetative cover, surface roughness, size and topography of the source area, and meteorological conditions (wind velocity, wind direction, wind duration, precipitation, and temperature). Movement of airborne contaminants occurs when wind speeds are high enough to dislodge particles; higher wind velocities are required to dislodge particles than are necessary to maintain suspension. # 4.1.2 Potential Transport Mechanisms in Estuarine Wetland and Aquatic Systems Potentially significant routes of migration for Site COPECs relative to wetland and aquatic systems occur in the primary transport media of surface water and sediment. The primary surface water/sediment pathways for potential contaminant migration from Site potential source areas (PSAs) are: (1) erosion/overland flow to wetland areas north and east of the Site from the North Area due to rainfall runoff and storm/tide surge; and (2) erosion/overland flow to the Intracoastal Waterway from the South Area as a result of rainfall runoff and extreme storm surge/tidal flooding events. The primary North Area PSAs, the former surface impoundments, were closed and capped in 1982. Thus, potential migration from these areas to the adjacent wetlands would have to have occurred during the operational period of the impoundments, potentially when discharges from the impoundments in July 1974 and August 1979 reportedly "contaminated surface water outside of ponds" and "damaged some flora north of the ponds" (EPA, 1980). Although not associated with Site operations, the historical and ongoing spraying of pesticides in the wetland areas for mosquito control could represent a potential source of DDT and PAHs (associated with the light oil base and diesel carrier used in spraying then and now, respectively) to the wetlands. Overland flow during runoff events occurs in the direction of topographic slope. Overland flow during runoff events occurs if soils are fully saturated and/or precipitation rates are greater than infiltration rates; therefore, this type of flow is usually associated with significant rainfall events. As a result of the minimal slope at the site, overland flow during more routine rainfall events is generally low, with runoff typically ponding in many areas of the Site. Extreme storm events, such as Hurricane Ike in September 2008, can inundate the Site, resulting in overland flow during both storm surge onset and recession. During less extreme storm surge events or unusually high tides, tidal flow to wetland areas on and adjacent to the Site occurs from Oyster Creek northeast of the Site (Figure 1); however, the wetland areas are more typically hydrologically isolated from Oyster Creek. Potential contaminant migration in surface water runoff can occur as both sediment load and dissolved load; therefore, both the physical and chemical characteristics of the contaminants are important with respect to surface-water/sediment transport. The low topographic slope of the Site and adjacent areas is not conducive to high runoff velocities or high sediment loads. Consequently, surface soil particles would not be readily transported in the solid phase. Additionally, the vegetative cover in the North Area is not conducive to significant soil erosion and resulting sediment load transport with surface water in these areas. Dissolved loads associated with surface runoff from the North Area would likewise be expected to be minimal due to the aforementioned absence of exposed PSAs, and the relatively low solubilities of those COPECs (primarily, pesticides and PAHs) that are present. ## 4.1.3 COPEC-Specific Fate and Transport Characteristics PAHs. A detailed literature review related to PAH fate and transport characteristics in similar settings to the Site was performed for the ecological problem formulation for the Alcoa(Point Comfort)/Lavaca Bay Superfund Site (Alcoa, 2000). That document (used with permission) provided significant parts of the summary presented herein. Due to their low solubility and relatively high affinity for adsorption to soils, sediment organic matter, PAHs in the aquatic environment are primarily associated with particulate matter and sediments (Neff, 1985). PAHs sorb to both inorganic and organic surfaces, although adsorption to organic surfaces tends to be most important. PAH adsorption to particulate mater, especially HPAHs, is a primary mechanism for removing these compounds from the water column, resulting in subsequent deposition to sediments. PAH sorption to sediments is strongly influenced by sediment organic carbon content. PAH sorption is also influenced by particle size (Karickhoff et al., 1979); the smaller the particle size, the greater the adsorption potential. Benthic organisms accumulate PAHs by two primary exposure routes: (1) bioconcentration through transport across biological membranes exposed to aqueous phase PAHs (i.e., pore water); and (2) bioaccumulation through direct food or sediment ingestion. For benthic organisms, direct ingestion of food and/or sediments is often the most significant exposure pathway for HPAHs (Niimi and Dookhran, 1989; Eadie et al., 1985; Weston, 1990), while pore water is likely a more significant route for LPAH accumulation (Meador et al., 1995b; Adams, 1987; Landrum, 1989). Differences in feeding regime (i.e., epibenthic, infaunal) also influence which exposure route is most significant. As a result of these issues, PAH accumulation by benthic organisms can vary. In addition, the degree to which organisms accumulate PAHs depends on their ability to metabolize these compounds. Although some organisms metabolize PAHs (e.g., fish and mammals), many benthic invertebrates are limited in their ability to metabolize PAHs (Meador et al., 1995a; Landrum, 1982; Frank et al., 1986). In general, there is little evidence to suggest PAHs biomagnify in aquatic systems. However, because of the limited ability of invertebrates to metabolize PAHs, some biomagnification may occur in lower trophic levels (Meador et al., 1995a; McElroy et al., 1989; Broman et al., 1990; Suede et al., 1994). Although metabolism often results in detoxification, some PAH metabolites are more toxic than parent materials; however, the degree to which these metabolites are accumulated by aquatic organisms is unknown. Organochlorine Pesticides and PCBs. Organochlorine pesticides and PCBs are of interest in characterizations of risk to ecological receptors due to the affinity of these compounds to sorb tightly onto soils and sediments and persist for long periods of time in the environment. The degradation of organochlorine compounds in the environment is dependent on the degree and pattern of chlorination, with compounds possessing five or more chlorine atoms more persistent in the environment than those with fewer chlorine atoms. Benthic invertebrate communities are particularly susceptible to organochlorine compound impacts as consequence of ingestion of sediment particles and exchange of PCBs directly from the particles. The silt and clay content of sediments can have a significant influence on the bioavailability of organochlorine compounds, with low silt and clay content sediments exhibiting decreased effects on benthic communities (Eisler, 1986). Due to bioaccumulative properties, organochlorine compounds cycle readily from sediment sources into upper trophic levels. This class of compounds are soluble in lipids and partition readily into the fatty tissues of higher-level consumers, with the ability to be metabolized
decreasing as the number of substituted chlorines decreases. For highly substituted compounds, metabolism is less likely and accumulation may continue indefinitely. The fate of organochlorine compounds within biologic systems is wide ranging as a result of differences in the ability to accumulate, metabolize, and eliminate specific isomers. ## 4.2 ECOSYSTEMS POTENTIALLY AT RISK Based on the remaining HQ exceedances listed in Tables 1 and 2, and in consideration of the ecological effects literature evaluation (Section 3.0), the fate and transport characteristics (Section 4.1), and the nature of the ecosystems themselves, the following ecosystems have been identified as potentially at risk: - Localized wetland areas in the North Area and north of the Site. The primary COPECs with HQ exceedances in wetland sediment are several PAHs (Table 2). As shown on Figure 8, most of the PAH HQs are located in three areas: (1) a small area immediately northeast of the former surface impoundments (where most of the highest PAH HQs are observed; e.g., 2WSED2); (2) a smaller area immediately south of the former surface impoundments (e.g., 2WSED17); and (3) at sample location NB4SE08 in the southwest part of the North Area approximately 60 feet north of Marlin Avenue. Additionally, dissolved copper in wetland surface water in the first area (the area northwest of the former surface impoundments) exceeds its TSWQS. - Localized areas of Intracoastal Waterway sediment within the former barge slips. The predominant COPECs in these areas, as reflected by HQ exceedances (Table 2), are PAHs. The total PAH concentration (5.62 mg/kg) was highest in the northernmost sample in the western barge slip. In the eastern barge slip, exceedances were limited to three PAHs, hexachlorobenzene, and HPAHs in one sample. - Localized area of North Area soils south of the former surface impoundments. As previously described (Section 2.3), the only HQs are 4,4'-DDT and Aroclor-1254 in the 1.5 to 2.0 foot depth interval sample from SB-204. This boring was located in an area where buried debris was observed and some of this debris (painted wood fragments and rubber) was observed in this specific sample interval. ## 5.0 SITE-SPECIFIC ASSESSMENT ENDPOINTS Assessment endpoints are explicit expressions of the ecological resource to be protected for a given receptor of potential concern (EPA, 1997). Several assessment endpoints were identified in the SLERA to focus the screening evaluation on relevant receptors rather than attempting to evaluate risks to all potentially affected ecological receptors. As part of this BERA problem formulation, these assessment endpoints were re-evaluated based on the remaining environmental media and receptors of potential concern. #### 5.1 TERRESTRIAL ASSESSMENT ENDPOINTS The terrestrial portion associated with the Site that remains of concern is a small area of land south of the former surface impoundments. The environmental value of upland lands is related to its ability to support plant communities, soil microbes/detritivores, and wildlife. Based on the steps taken in the refinement (Section 2.0) and new information obtained about COPEC fate and transport and ecosystems at risk (Section 4.0), the following remains the assessment endpoint for the BERA (Table 4): • Soil invertebrates abundance, diversity, and productivity (as decomposers and food chain base, among others) are ecological values to be preserved in a terrestrial ecosystem because they provide a mechanism for the physical and chemical breakdown of detritus for microbial decomposition (remineralization), which is a vital function. # 5.2 ESTUARINE WETLAND AND AQUATIC ASSESSMENT ENDPOINTS The estuarine wetland habitat for the Site extends over the majority of the North Area while the Intracoastal Waterway (i.e., aquatic habitat) is south of the Site. Wetlands are particularly important habitat because they often serve as a filter for water prior to it going into another water body. They are also important nurseries for fish, crab, and shrimp, and they act as natural detention areas to prevent flooding. The environmental value for these areas is related to their ability to support wetland plant communities, microbes/benthos/detritivores in the sediment, and wildlife. Based on the steps taken in the refinement (Section 2.0) and new information obtained about COPEC fate and transport and ecosystems at risk (Section 4.0), the following remains the assessment endpoint for the BERA (Table 4): • Benthos abundance, diversity, and productivity are values to be preserved in estuarine ecosystems because these organisms provide a critical pathway for energy transfer from detritus and attached algae to other omnivorous organisms (e.g., polychaetes and crabs) and carnivorous organisms (e.g., black drum and sandpipers), as well as integrating and transferring the energy and nutrients from lower trophic levels to higher trophic levels. The most important service provided by benthic detritivores is the physical breakdown of organic detritus to facilitate microbial decomposition. # 6.0 CONCEPTUAL SITE MODEL AND RISK QUESTIONS ## 6.1 CONCEPTUAL SITE MODEL Preliminary Conceptual Site Models (CSMs) for the aquatic and terrestrial ecosystems were described in the SLERA. During problem formulation in the BERA, these CSMs have been updated to consider the results of the COPEC refinement (Section 2.0), expanded review of potential ecological effects of those COPECs (Section 3.0), and the more detailed fate and transport evaluation (Section 4.0). Updated CSMs based on these considerations are shown on Figures 10 and 11. These CSMs are discussed below. The identification of potentially complete exposure pathways is performed to evaluate the exposure potential as well as the risk of effects on ecosystem components. In order for an exposure pathway to be considered complete, it must meet all of the following four criteria (EPA, 1997): - A source of the contaminant must be present or must have been present in the past. - A mechanism for transport of the contaminant from the source must be present. - A potential point of contact between the receptor and the contaminant must be available. - A route of exposure from the contact point to the receptor must be present. Exposure pathways can only be considered complete if all of these criteria are met. If one or more of the criteria are not met, there is no mechanism for exposure of the receptor to the contaminant. The potentially complete and significant exposure pathways and receptors that match the current assessment endpoints are shown in the CSM for the terrestrial and estuarine wetland and aquatic ecosystems (Figures 10 and 11, respectively). In general, biota can be exposed to chemical stressors through direct exposure to abiotic media or through ingestion of forage or prey that have accumulated contaminants. Exposure routes are the mechanisms by which a chemical may enter a receptor's body. Possible exposure routes include 1) absorption across external body surfaces such as cell membranes, skin, integument, or cuticle from the air, soil, water, or sediment; and 2) ingestion of food and incidental ingestion of soil, sediment, or water along with food. Absorption is especially important for plants and aquatic life. The terrestrial ecosystem CSM (Figure 10) begins with historical releases of the COPECs from the former surface impoundments and operations areas in the North and South Areas. Soil became contaminated with the COPECs and contaminated soil was transported from its original location to other portions of the Site via the transport mechanisms of surface runoff and airborne suspension/deposition. The significant potential receptors (soil invertebrates) are then exposed to soils in their original location or otherwise via direct contact or ingestion of soil. The aquatic ecosystem CSM (Figure 11) begins with historical releases of the COPECs from barge cleaning operations that impacted sediment in the barge slips of the Intracoastal Waterway and surface water and sediment in the North Area wetlands. These areas were impacted via the primary release mechanisms of direct discharge from past operations, surface runoff, and particulate dust/volatile emissions. Tidal flooding and rainfall events created secondary release mechanisms of resuspension/deposition, bioirrigation, and bioturbation, such that other areas of surface water and sediment became contaminated. The significant potential receptors (sediment and water-column invertebrates) are then exposed to the contaminated surface water and sediment in their original location or otherwise via direct contact or ingestion of surface water and sediment. #### 6.2 RISK QUESTIONS As described in ecological risk assessment guidance (EPA, 1997), risk questions for the BERA are questions about the relationships among assessment endpoints and their predicted responses when exposed to contaminants. As such, the risk questions are based on the assessment endpoints and provide a basis for the ecological investigation study design developed in the BERA WP/SAP. The overarching risk question to be evaluated in the BERA is whether Site-related contaminants are causing, or have the potential to cause, adverse effects on the invertebrates in North Area soils and on benthos and zooplankton of the wetlands area and the barge slips of the Intracoastal Waterway. For problem formulation, this overarching question is refined into a series of specific questions referencing specific COPECs and the assessment endpoint. Preliminary risk questions were developed for the SLERA (PBW, 2010). Based on the information developed for this problem formulation, these risk questions were refined to the questions identified in Table 4 of this report. Testable hypotheses and measures of effect for these questions will be developed in the WP/SAP. The risk questions of concern for the end of the BERA Problem Formulation are the
following: - Does exposure to COPECs in soil adversely affect the abundance, diversity, productivity, and function of soil invertebrates? - Does exposure to COPECs in sediment and surface water adversely affect the abundance, diversity, productivity, and function of sediment and water-column invertebrates? ## 7.0 SCIENTIFIC MANAGEMENT DECISION POINT The final component of BERA problem formulation is an SMDP. The SMDP entails identification and agreement on the COPECs, assessment endpoints, exposure pathways, and risk questions that have been described in previous sections. As discussed above, the ecosystems potentially at risk for adverse effects are 1) localized areas of sediment within the Site barge slips (primarily due to PAHs); 2) localized wetland areas (primarily due to PAHs and pesticides), mainly northeast of the former surface impoundments and north of Marlin Avenue; and 3) a localized area of soils south of the former surface impoundments in the North Area. The list of COPECs that will be addressed in the WP/SAP to obtain additional site-specific information is presented in Table 5. #### 8.0 REFERENCES Adams, W.J., 1987. Bioavailability of Neutral Lipophilic Organic Chemicals Contained on Sediments: A Review. In K.L. Dickson, A.W. Maki, and W.A. Brungs, eds. Fate and Effects of Sediment-Bound Chemicals in Aquatic Systems. Sixth Pelleston Workshop. Pergamon Press: Elmsford, New York. Pp. 219-244. Alcoa, 2000. Final Baseline Risk Assessment Report, Alcoa (Point Comfort)/Lavaca Bay Superfund Site. May 19. Broman, D., C. Nat, I. Undbergh, and Y Zebuhr, 1990. An in situ study on the distribution, biotransformation and flux of polycyclic aromatic hydrocarbons (PAH) in an aquatic food chain (Seston - Mytilus edulis-Somaterla mollissima L.) from the Baltic: an ecotoxicological perspective. Environ. Toxicol. Chem. 9:429. Brazoria County Facts (Facts), 2006. "Pilots Take to Skies to Eradicate Mosquitoes." June 16. Brazoria County Facts (Facts), 2008a. "County District Responds to Mosquito Outbreak." September 8. Brazoria County Facts (Facts), 2008b. "State Adds to Mosquito-Spraying Efforts." September 26. Buchman, M.F., 2008. NOAA Screening Quick Reference Tables (SQuiRTs). NOAA OR&R Report 08-1, Seattle, WA. Office of Response and Restoration Division. National Atmospheric Administration. 34 pages. Carden, Clair A., 1982. Fish Marine Services, Freeport, Texas, Pond Closure Certification. August 18. Eadie, B.J., W.R. Faust, P.F. Landrum, and N.R. Morehead, 1985. Factors affecting bioconcentration of PAH by the dominant benthic organism of the Great Lakes. In H.W. Cooke and A.J. Dennis, eds. Polynuclear Aromatic Hydrocarbons: Eighth International Symposium on Mechanisms, Methods, and Metabolism. Battelle Press: Columbus, Ohio. Pp. 363-377. Eisler, R. 1986. Polychlorinated biphenyl hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and Wildlife Service Biological Report 85(1.7). Karickhoff, S.W., D.S. Brown, and T.A. Scott, 1979. Sorption of hydrophobic pollutants on natural sediments. Water Res. 13:241-248. Lake Jackson News, 1957. "Spray Plane Swats Mosquito via Two Day Oil Spray Job." August 8. Landrum, P.F., 1982. Uptake, deprivation and biotransformation of anthracene by the SCUD, Pontopoveia hoyi. Chemosphere. 11:1049-1057. Landrum, P.F., 1989. Bioavailability and toxicokinetics of polycyclic aromatic hydrocarbons sorbed to sediments for the amphipod Pontoporeia hoyi. Environ. Sci. Technol. 23:588-595. Losack, Billy, 2005. Personal communication with Pastor, Behling & Wheeler, LLC. July. McElroy, A.E., J.W. Farrington, and J.M. Teal, 1989. Bioavailability of PAHs in the aquatic environment. In U. Varanasi, ed. Metabolism of Polynuclear Aromatic Hydrocarbons (PAHs) In the Aquatic Environment. CRC Press: Boca Raton, Florida. Pp 1-39. Meador, J.P., E. Casillas, C.A. Sloan, and U. Varanasi, 1995a. Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev. Environ. Contam. Toxicol. 145:79-165. Meador, J.P., E. Casillas, C.A. Sloan, and U. Varanasi, 1995b. Comparative bioaccumulation of polycyclic aromatic hydrocarbons from sediment by two infaunal organisms. Mar. Ecol. Prog. Ser. 123:107-124. Neff, J.M.,1985. Polycyclic aromatic hydrocarbons. In G. Rand and S.R. Petrocelli, eds., Fundamentals of Aquatic Toxicology:: Methods and Applications. Hemisphere Publishing Co.: New York, New York. Niimi, A.J. and G.P. Dookhran, 1989. Dietary absorption efficiencies and elimination rates of polycyclic aromatic hydrocarbons in rainbow trout (Salmo gairdneri). Environ. Toxicol. Chem. 8:719:722. Pastor, Behling & Wheeler, LLC (PBW), 2006. Final RI/FS Work Plan, Gulfco Marine Maintenance Site, Freeport, Texas. May 16. Pastor, Behling & Wheeler, LLC (PBW), 2009. Final Nature and Extent Data Report. Gulfco Marine Maintenance Superfund Site, Freeport, Texas. May 20. Pastor, Behling & Wheeler, LLC (PBW), 2010. Final Screening-Level Ecological Risk Assessment Report, Gulfco Marine Maintenance Site, Freeport, Texas. March 10. Suede, B.C., J.A. Boraczck, R.K. Peddicord, P.A. Clifford, and T.M. Dillon, 1994. Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Rev. Env. Contam. Toxicol. 136:21-89. Teeter, A.M., Brown, G.L., Alexander, M.P., Callegan, C.J., Sarruff, M.S., and McVan, D.C., 2002. Wind-wave resuspension and circulation of sediment and dredged material in Laguna Madre, Texas, ERDC/CHL TR-02-XX, U.S. Army Engineer Research and Development Center, Vicksburg, MS. Texas Department of Transportation (TxDOT), 2001. Transportation Multimodal Systems Manual. September. Texas Natural Resource Conservation Commission (TNRCC), 2002. HRS Documentation Record, Gulfco Marine Maintenance, Inc. Freeport, Brazoria County, Texas TXD 055 144 539. Prepared in cooperation with the U.S. Environmental Protection Agency. February. United States Army Corps of Engineers (USACE), 2006. Waterborne Commerce of the United States, Calendar Year 2006. IWR-WCUS-06-2. United States Army Corps of Engineers (USACE), 2008. October 2008 Hydrograph Bulletin, Channels With Project Depths Under 25 Feet, Galveston District. October, 2008. United States Army Corps of Engineers (USACE), 2009. Personal communication with Ms. Alicia Rea. July. United States Environment Protection Agency (EPA), 1980. Potential Hazardous Waste Site Inspection Report. July 15. United States Environment Protection Agency (EPA), 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments (Interim Final). OSWER Directive 9285.7-25. EPA/540/R-97/006. June. United States Environmental Protection Agency (EPA), 2002. Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites. Office of Emergency and Remedial Response. EPA 540-R-01-003. OSWER 9285.7-41. September. United States Environmental Protection Agency (EPA), 2009. National Recommended Water Quality Criteria. Office of Water, Office of Science and Technology. Accessed online 12/20/2009 at http://www.epa.gov/ost/criteria/wqctable/. United States Fish and Wildlife Service (USFWS), 2008. National Wetlands Inventory, Online Wetlands Mapper. http://wetlandsfws.er.usgs.gov/wtlnds/launch.html. Accessed July 9, 2008. Weston, D.P., 1990. Hydrocarbon bioaccumulation from contaminated sediment by the deposit feeding polychaete Abarenicola pacifica. Mar. Biol. 107:159-169. TABLE 1 UPDATED ECOLOGICAL HAZARD QUOTIENTS EXCEEDING ONE FOR SOIL | MEDIA | RECEPTOR | CHEMICAL OF
POTENTIAL
ECOLOGICAL | TOXICITY VALUE* | EXPOSURE POINT
CONCENTRATION
(mg/kg) | BASIS FOR EPC | EHQ | |-----------------|--------------------------|--|-----------------|--|--------------------|------------| | North Area Soil | Invertebrate (Earthworm) | 4,4'-DDT
Aroclor-1254 | NOAEL
NOAEL | 3.95E-01
6.35E+00 | Maximum
Maximum | 9.2
2.5 | #### Notes: EHQ - ecological hazard quotient NOAEL - no observable adverse effects level PAH - polynuclear aromatic hydrocarbon HPAH - high-molecular weight PAH *See Table D-3 in Appendix D for further information about the toxicity reference values used in the risk calculations. TABLE 2 UPDATED ECOLOGICAL HAZARD QUOTIENTS EXCEEDING ONE FOR SEDIMENT AND SURFACE WATER | | | CHEMICAL OF | | EXPOSURE POINT | | | |------------------------|---------------------------|--------------------------|------------------|----------------------|-----------|------------| | MEDIA | RECEPTOR | POTENTIAL ECOLOGICAL | TOXICITY VALUE* | CONCENTRATION | BASIS FOR | EHQ | | | | CONCERN | | (mg/kg) | EPC | • | | Introducted Weterway | Delveheetee | 4 4' DDT | ERL | 2 225 02 | Maximum | 3.3 | | Intracoastal Waterway | Polychaetes | 4,4'-DDT
Acenaphthene | ERL | 3.32E-03
6.31E-02 | Maximum | 3.3
1.4 | | Sediment | (Capitella | · ' | | | Maximum | | | | | Benzo(a)anthracene | ERL | 3.95E-01 | Maximum | 1.5 | | | | Chrysene | ERL | 4.75E-01 | Maximum | 1.2 | | | | Dibenz(a,h)anthracene | ERL | 2.35E-01 | Maximum | 3.7 | | | | Fluoranthene | ERL | 8.04E-01 | Maximum | 1.3 | | | | Fluorene | ERL | 4.60E-02 | Maximum | 2.4 | | | | Hexachlorobenzene | AET | 3.19E-02 | Maximum | 5.3 | | | | Phenanthrene | ERL | 5.08E-01 | Maximum | 2.1 | | | | Pyrene | ERL | 8.62E-01 | Maximum | 1.3 | | | | LPAH | ERL | 7.10E-01 | Maximum | 1.3 | | | | HPAH | ERL | 4.91E+00 | Maximum | 2.9 | | | | Total PAH | ERL | 5.62E+00 | Maximum | 1.4 | | | | Dibenz(a,h)anthracene | midpoint ERL/ERM | 2.35E-01 | Maximum | 1.5 | | Wetlands Sediment | Polychaetes | 2-Methylnaphthalene | ERL | 4.30E-01 | Maximum | 6.1 | | | (Capitella | 4,4'-DDT | ERL | 9.22E-03 | Maximum | 8 | | | (| Acenaphthene | ERL | 1.33E-01 | Maximum | 8.3 | | | | Acenaphthylene | ERL | 5.45E-01 | Maximum | 12.4 | | | | Anthracene | ERL | 3.34E-01 | Maximum | 3.9 | | | | Benzo(a)anthracene | ERL |
9.93E-01 | Maximum | 3.8 | | | | Benzo(a)pyrene | ERL | 1.30E+00 | Maximum | 3 | | | | Benzo(g,h,i)perylene | AET | 1.94E+00 | Maximum | 2.9 | | | | Chrysene | ERL | 4.05E+00 | Maximum | 10.5 | | | | Dibenz(a,h)anthracene | ERL | 2.91E+00 | Maximum | 45.9 | | | | Endrin Aldehyde | ERL | 1.00E-02 | Maximum | 3.8 | | | | Endrin Ketone | ERL | 1.30E-02 | Maximum | 4.9 | | | | Fluoranthene | ERL | 2.17E+00 | Maximum | 3.6 | | | | Fluorene | ERL | | | 7.3 | | | | | ERL | 1.39E-01 | Maximum | 7.3
1.6 | | | | gamma-Chlordane | | 3.60E-03 | Maximum | | | | | Indeno(1,2,3-cd)pyrene | AET | 1.94E+00 | Maximum | 3.2 | | | | Nickel | ERL | 2.77E-01 | Maximum | 1.3 | | | | Phenanthrene | ERL | 1.30E+00 | Maximum | 5.4 | | | | Pyrene | ERL | 1.64E+00 | Maximum | 2.5 | | | | LPAH | ERL | 1.15E+00 | Maximum | 2.1 | | | | НРАН | ERL | 1.39E+01 | Maximum | 8.2 | | | | Total PAHs | ERL | 1.51E+01 | Maximum | 3.8 | | | | 2-Methylnaphthalene | midpoint ERL/ERM | 4.30E-01 | Maximum | 1.2 | | | | Acenaphthylene | midpoint ERL/ERM | 5.45E-01 | Maximum | 1.6 | | | | Benzo(a)anthracene | midpoint ERL/ERM | 9.93E-01 | Maximum | 1.1 | | | | Benzo(a)pyrene | midpoint ERL/ERM | 1.30E+00 | Maximum | 1.3 | | | | Chrysene | midpoint ERL/ERM | 4.04E+00 | Maximum | 2.5 | | | | Dibenz(a,h)anthracene | midpoint ERL/ERM | 2.91E+00 | Maximum | 18 | | | | Phenanthrene | midpoint ERL/ERM | 1.30E+00 | Maximum | 1.5 | | | | HPAH | midpoint ERL/ERM | 1.39E+01 | Maximum | 2.5 | | Wetlands Surface Water | Aquatic
Invertebrates | Dissolved copper | TSWQS | 1.10E-02 | Maximum | 3.1 | | Pond Sediment | Polychaetes
(Capitella | 4,4'-DDT | ERL | 1.57E-03 | Maximum | 1.3 | Notes: ERL - effects range low ERM - effects range medium AET - apparent effects threshold EHQ - ecological hazard quotient PAH - polynuclear aromatic hydrocarbon LPAH - low-molecular weight PAH HPAH - high-molecular weight PAH ^{*}See Tables E-2, F-2, and G-2 in Appendices for further information about the toxicity reference values used in the risk calculations. # **TABLE 3 REVISED SEDIMENT TOXICITY VALUES** | Chemicals of Potential Ecological Concern | Midpoint of ERL/ERM | |---|---------------------| | | | | 4,4'-DDT | 0.032045 | | Acenaphthene | 0.258 | | Acenaphthylene | 0.342 | | Anthracene | 0.59265 | | Arsenic | 39.1 | | Benzo(a)anthracene | 0.9305 | | Benzo(a)pyrene | 1.015 | | Benzo(g,h,i)perylene * | 1.8 | | Chrysene | 1.592 | | Copper | 152 | | Dibenz(a,h)anthracene | 0.1617 | | Endrin Aldehyde ** | 0.01 | | Endrin Ketone ** | 0.01 | | Fluoranthene | 2.85 | | Fluorene | 0.2795 | | gamma-Chlordane | 0.003525 | | Hexachlorobenzene * | 0.006 | | Indeno(1,2,3-cd)pyrene * | 0.6 | | Lead | 132.35 | | Nickel | 36.25 | | Phenanthrene | 0.87 | | Pyrene | 1.6325 | | Zinc | 280 | | LPAH | 1.856 | | НРАН | 5.65 | | TOTAL PAHs | 11.86105 | | | | ## Notes: Values from NOAA SQUIRTS table (Buchman, 2009). ^{*} No Effects Range -Low (ERL) or Effects Range - Medium (ERM) available, so Apparent Effects Treshold (AET) is represented. ^{**} midpoint of freshwater sediment Threshold Effects Level (TEL) and Probable Effects Level (PEL). No marine sediment toxicity benchmark values available. TABLE 4 ASSESSMENT ENDPOINTS AND RISK QUESTIONS | Guild | Receptor of Potential
Concern | Assessment Endpoint for BERA | Ecological Risk Questions | |-------------------------|----------------------------------|---|--| | Invertebrates | Earthworm | Protection of soil invertebrate community from uptake and direct toxic effects on detritivore abundance, diversity, productivity from COPECs in soil. | Does exposure to COPECs in soil adversely affect the abundance, diversity, productivity, and function? | | Benthos and zooplankton | Polychaetes | Protection of benthic and water-column invertebrate communities from uptake and direct toxic effects on abundance, diversity, and productivity from COPECs in sediment and surface water. | Does exposure to CPOECs in sediment and surface water adversely affect the abundance, diversity, productivity, and function? | TABLE 5 COPECS AND MEDIA RECOMMENDED FOR FURTHER EVALUATION IN THE WORK PLAN FOR THE BASELINE ECOLOGICAL RISK ASSESSMENT | MEDIA | ASSESSMENT ENDPOINT | CHEMICAL OF POTENTIAL ECOLOGICAL CONCERN | |--------------------------------|--|--| | North Area Soil | Direct Toxicity to Soil Invertebrate | 4,4'-DDT
Aroclor-1254 | | Intracoastal Waterway Sediment | Direct Toxicity to Benthic Receptor | 4,4'-DDT Acenaphthene Benzo(a)anthracene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Hexachlorobenzene Phenanthrene Pyrene LPAH HPAH Total PAH | | Wetlands Sediment | Direct Toxicity to Benthic Receptor | 2-Methylnaphthalene 4,4'-DDT Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Endrin Aldehyde Endrin Ketone Fluoranthene Fluorene gamma-Chlordane Indeno(1,2,3-cd)pyrene Nickel Phenanthrene Pyrene LPAH HPAH Total PAHs | | Wetlands Surface Water | Direct Toxicity to Aquatic Invertebrates | Dissolved Copper | | Pond Sediment | Direct Toxicity to Benthic Receptor | 4,4'-DDT | Notes: PAH - polynuclear aromatic hydrocarbon LPAH - low-molecular weight PAH HPAH - high-molecular weight PAH